trying...
4 1 0 1 MCID_676f086a6ad28246900a9297
35755340
Mohamed Nabil Abd Al Moaty[author] Moaty, Mohamed Nabil Abd Al[Full Author Name] OR Abd Al Moaty, Mohamed Nabil[Full Author Name] moaty, mohamed nabil abd al[Author] OR abd al moaty, mohamed nabil[Author]
trying2... trying...
35755340 2022 07 16 2470-1343 7 24 2022 Jun 21 ACS omega ACS Omega Harnessing ROS-Induced Oxidative Stress for Halting Colorectal Cancer via Thiazolidinedione-Based SOD Inhibitors. 21267 21279 21267-21279 10.1021/acsomega.2c02410 Based on the "canonical" view of reactive oxygen species' (ROS) contribution to carcinogenesis, ROS induce oxidative stress and promote various tumor progression events. However, tumor cells also need to defend themselves against oxidative damage. This "heresy" was supported by several recent studies underlining the role of cellular antioxidant capacity in promoting metastasis and resistance to chemotherapy. Accordingly, harnessing the ROS-induced oxidative stress via selective suppression of the cancer antioxidant defense machinery has been launched as an innovative anticancer strategy. Within this approach, pharmacological inhibition of superoxide dismutases (SODs), the first-line defense antioxidant enzymes for cancer cells, selectively kills tumor cells and circumvents their acquired resistance. Various SOD inhibitors have been introduced, of which some were tolerated in clinical trials. However, the hit SOD inhibitors belong to diverse chemical classes and lack comprehensive structure-activity relationships (SAR). Herein, we probe the potential of newly synthesized benzylidene thiazolidinedione derivatives to inhibit SOD in colorectal cancer with special emphasis on their effects on correlated antioxidant enzymes aldehyde dehydrogenase 1 (ALDH1) and glutathione peroxidase (GPx). This may possibly bring a new dawn for utilizing thiazolidinediones (TZDs) in cancer therapy through SOD inhibition mechanisms. The preliminary 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all of the evaluated TZDs exhibited excellent safety profiles on normal human cells, recording an EC100 of up to 47.5-folds higher than that of doxorubicin. Compounds 3c , 6a , and 6e (IC50 = 4.4-4.7 μM) were superior to doxorubicin and other derivatives against Caco-2 colorectal cancer cells within their safe doses. The hit anticancer agents inhibited SOD (IC50 = 97.2-228.8 μM). Then, they were selected for further in-depth evaluation on the cellular level. The anticancer IC50 doses of 3c , 6a , and 6e diminished the antioxidant activities of SOD (by 29.7, 70.1, and 33.3%, respectively), ALDH1A (by 85.92, 95.84, and 86.48%, respectively), and GPX (by 50.17, 87.03, and 53.28%, respectively) in the treated Caco-2 cells, elevating the Caco-2 cellular content of ROS by 21.42, 7.863, and 8.986-folds, respectively. Docking simulations were conducted to display their possible binding modes and essential structural features. Also, their physicochemical parameters and pharmacokinetic profiles formulating drug-likeness were computed. © 2022 The Authors. Published by American Chemical Society. Abd Al Moaty Mohamed Nabil MN 0000-0003-2843-9704 Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. El Ashry El Sayed H ESH 0000-0001-5480-239X Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Awad Laila Fathy LF 0000-0001-9521-5511 Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Mostafa Asmaa A Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Abu-Serie Marwa M MM Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt. Teleb Mohamed M Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt. eng Journal Article 2022 06 07 United States ACS Omega 101691658 2470-1343 The authors declare no competing financial interest. 2022 4 18 2022 5 26 2022 6 27 3 49 2022 6 28 6 0 2022 6 28 6 1 2022 6 7 epublish 35755340 PMC9219103 10.1021/acsomega.2c02410 Hanahan D.; Weinberg R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646–674. 10.1016/j.cell.2011.02.013. 10.1016/j.cell.2011.02.013 21376230 Azad M. B.; Chen Y.; Gibson S. B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid. Redox Signaling 2009, 11, 777–790. 10.1089/ars.2008.2270. 10.1089/ars.2008.2270 18828708 Sosa V.; Moliné T.; Somoza R.; Paciucci R.; Kondoh H.; Leonart M. E. Oxidative stress and cancer: an overview. Ageing Res. Rev. 2013, 12, 376–390. 10.1016/j.arr.2012.10.004. 10.1016/j.arr.2012.10.004 23123177 Sashi Papu John A. M.; Ankem M. K.; Damodaran C. Oxidative Stress: A Promising Target for Chemoprevention. Curr. Pharmacol. Rep. 2016, 2, 73–81. 10.1007/s40495-016-0052-3. 10.1007/s40495-016-0052-3 PMC4827866 27088073 Thapa D.; Ghosh R. Antioxidants for prostate cancer chemoprevention: Challenges and opportunities. Biochem. Pharmacol. 2012, 83, 1319–1330. 10.1016/j.bcp.2011.12.027. 10.1016/j.bcp.2011.12.027 22248733 Mohsenzadegan M.; Farhad S.; Mohammad M. F.; Majid K. Anti-Oxidants as Chemopreventive Agents in Prostate Cancer: A Gap Between Preclinical and Clinical Studies. Recent Pat. Anti-Cancer Drug Discovery 2018, 13, 224–239. 10.2174/1574892813666180213164700. 10.2174/1574892813666180213164700 29446748 Wattenberg L. W. Chemoprevention of cancer. Cancer Res. 1985, 45, 1–8. 3880665 Piccolella S.; Pacifico S. Plant-derived polyphenols: a chemopreventive and chemoprotectant worth-exploring resource in toxicology. Adv. Mol. Toxicol. 2015, 161–214. 10.1016/B978-0-12-802229-0.00005-0. 10.1016/B978-0-12-802229-0.00005-0 Postovit L.; Widmann C.; Huang P.; Gibson S. B. Harenssing Oxidative Stress as an Innovative Target for Cancer Therapy. Oxid. Med. Cell. Longevity 2018, 2018, 613573910.1155/2018/6135739. 10.1155/2018/6135739 PMC5994291 29977457 Pani G.; Colavitti R.; Bedogni B.; Fusco S.; Ferraro D.; Borrello S.; Galeotti T. Mitochondrial superoxide dismutase: a promising target for new anticancer therapies. Curr. Med. Chem. 2004, 11, 1299–1308. 10.2174/0929867043365297. 10.2174/0929867043365297 15134521 McCord J. M.; Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. 10.1016/S0021-9258(18)63504-5. 10.1016/S0021-9258(18)63504-5 5389100 Margis R.; Dunand C.; Teixeira F. K.; Margis-Pinheiro M. Glutathione peroxidase family–an evolutionary overview. FEBS J. 2008, 275, 3959–3970. 10.1111/j.1742-4658.2008.06542.x. 10.1111/j.1742-4658.2008.06542.x 18616466 Younus H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. PMC5969776 29896077 Culotta V. C.; Yang M.; O’Halloran T. V. Activation of superoxide dismutases: putting the metal to the pedal. Biochim. Biophys. Acta, Mol. Cell Res. 2006, 1763, 747–758. 10.1016/j.bbamcr.2006.05.003. 10.1016/j.bbamcr.2006.05.003 PMC1633718 16828895 Irawan B.; Labeda I.; Lusikooy R. E.; Sampetoding S.; Kusuma M. I.; Uwuratuw J. A.; Syarifuddin E.; Faruk M.; et al. Association of superoxide dismutase enzyme with staging and grade of differentiation colorectal cancer: a cross-sectional study. Ann. Med. Surg. 2020, 58, 194–199. 10.1016/j.amsu.2020.08.032. 10.1016/j.amsu.2020.08.032 PMC7505864 32994983 Li S.; Fu L.; Tian T.; Deng L.; Li H.; Xiao W.; Gong Q. Disrupting SOD1 activity inhibits cell growth and enhances lipid accumulation in nasopharyngeal carcinoma. Cell Commun. Signaling 2018, 16, 2810.1186/s12964-018-0240-3. 10.1186/s12964-018-0240-3 PMC5996554 29891006 Mulder T. P.; Verspaget H. W.; Janssens A. R.; De Bruin P. A.; Griffioen G.; Lamers C. B. Neoplasia-related changes of two copper (Cu)/zinc (Zn) proteins in the human colon. Free Radical Biol. Med. 1990, 9, 501–506. 10.1016/0891-5849(90)90128-6. 10.1016/0891-5849(90)90128-6 2079229 Skórska K. B.; Płaczkowska S.; Prescha A.; Porębska I.; Kosacka M.; Pawełczyk K.; Zabłocka-Słowińska K. Serum Total SOD Activity and SOD1/2 Concentrations in Predicting All-Cause Mortality in Lung Cancer Patients. Pharmaceuticals 2021, 14, 106710.3390/ph14111067. 10.3390/ph14111067 PMC8622563 34832849 Miranda A.; Janssen L.; Bosman C. B.; van Duijn W.; Oostendorp-van de Ruit M. M.; Kubben F. J.; Griffioen G.; Lamers C. B.; Han J.; Van Krieken J. M.; van de Velde C. J. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin. Cancer Res. 2000, 6, 3183–3192. 10955802 Li W.; Cao L.; Han L.; Xu Q.; Ma Q. Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-κB axis. Int. J. Oncol. 2015, 46, 2613–2620. 10.3892/ijo.2015.2938. 10.3892/ijo.2015.2938 25825208 Marikovsky M.; Nevo N.; Vadai E.; Harris-Cerruti C. Cu/Zn superoxide dismutase plays a role in angiogenesis. Int. J. Cancer 2002, 97, 34–41. 10.1002/ijc.1565. 10.1002/ijc.1565 11774241 Mendes F.; Pereira E.; Martins D.; Tavares-Silva E.; Pires A. S.; Abrantes A. M.; Figueiredo A.; Botelho M. F. Oxidative stress in bladder cancer: an ally or an enemy?. Mol. Biol. Rep. 2021, 48, 2791–2802. 10.1007/s11033-021-06266-4. 10.1007/s11033-021-06266-4 33733384 Arumsari S.; Noor D.; Dewi S.; Syahrani R.; Wanandi S. In vitro transfection of manganese superoxide dismutase small interfering RNA suppresses stemness of human breast cancer stem cells (aldehyde dehydrogenase 1-positive): Focus on OCT4 mRNA expression and mammosphere-forming capacity. J. Nat. Sci., Biol. Med. 2019, 10, S82–S87. 10.4103/jnsbm.JNSBM_113_19]. 10.4103/jnsbm.JNSBM_113_19] Koppaka V.; Thompson D. C.; Chen Y.; Ellermann M.; Nicolaou K. C.; Juvonen R. O.; Petersen D.; Deitrich R. A.; Hurley T. D.; Vasiliou V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev. 2012, 64, 520–539. 10.1124/pr.111.005538. 10.1124/pr.111.005538 PMC3400832 22544865 Lowndes S. A.; Adams A.; Timms A.; Fisher N.; Smythe J.; Watt S. M.; Joel S.; Donate F.; Hayward C.; Reich S.; Middleton M.; Mazar A.; Harris A. L. Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors Clin. Cancer Res. 2008, 14, 7526–7534. 10.1158/1078-0432.CCR-08-0315. 10.1158/1078-0432.CCR-08-0315 19010871 Lin J.; Beer T. M.; Ryan C. J.; Mathew P.; Wilding G.; Morris M.; Callahan J. A.; Gordon G.; Reich S.; Carducci M. A. A randomized, phase II study of ATN-224 in patients with biochemically relapsed, hormone-naive prostate cancer: a DOD/PCF Prostate Cancer Clinical Trials Consortium trial. J. Clin. Oncol. 2009, 27, 513510.1200/jco.2009.27.15_suppl.5135. 10.1200/jco.2009.27.15_suppl.5135 Dong X.; Zhang Z.; Zhao J.; Lei J.; Chen Y.; Li X.; Chen H.; Tian J.; Zhang D.; Liu C.; Liu C. The rational design of specific SOD1 inhibitors via copper coordination and their application in ROS signaling research. Chem. Sci. 2016, 7, 6251–6262. 10.1039/C6SC01272H. 10.1039/C6SC01272H PMC6024207 30034766 Somwar R.; Shum D.; Djaballah H.; Varmus H. Identification and preliminary characterization of novel small molecules that inhibit growth of human lung adenocarcinoma cells. J. Biomol. Screen. 2009, 14, 1176–1184. 10.1177/1087057109350919. 10.1177/1087057109350919 PMC3146390 19887599 Somwar R.; Erdjument-Bromage H.; Varmus H. E.; et al. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 16375–16380. 10.1073/pnas.1113554108. 10.1073/pnas.1113554108 PMC3182729 21930909 Kaminskyy D.; Kryshchshyn A.; Lesyk R. 5-Ene-4-Thiazolidionones-An efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017, 140, 542–594. 10.1016/j.ejmech.2017.09.031. 10.1016/j.ejmech.2017.09.031 PMC7111298 28987611 Naim M. J.; Alam M. J.; Ahmed S.; Nawaz F.; Shrivastava N.; Sahu M.; Alam O. Therapeutic journey of 2,4-thiazolidinedions as a versatile scaffold: An insight into structure activity relationship. Eur. J. Med. Chem. 2017, 129, 218–250. 10.1016/j.ejmech.2017.02.031. 10.1016/j.ejmech.2017.02.031 28231521 Munwar S.; Lango K. Thiazolidinediones (TZD) as a versatile scaffold in medicinal chemistry biological importance: A Review. Int. J. Pharm. Sci. Rev. 2020, 63, 58–70. Schweipert M.; Jänsch N.; Upadhyay N.; Tilekar K.; Wozny E.; Basheer S.; Wurster E.; Müller M.; CS R.; Meyer-Almes F. J. Mechanistic Insights into Binding of Ligands with Thiazolidinedione Warhead to Human Histone Deacetylase 4. Pharmaceuticals 2021, 14, 103210.3390/ph14101032. 10.3390/ph14101032 PMC8537711 34681256 Mueller S. L.; Chrysanthopoulos P. K.; Halili M. A.; Hepburn C.; Nebl T.; Supuran C. T.; Nocentini A.; Peat T. S.; Poulsen S. A. The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors: A Spin-Off Discovery from Fragment Screening. Molecules 2021, 26, 301010.3390/molecules26103010. 10.3390/molecules26103010 PMC8158703 34070212 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. 10.1016/0022-1759(83)90303-4. 10.1016/0022-1759(83)90303-4 6606682 Lotfy G.; Abdel Aziz Y. M.; Aziz Y. M. A.; Said M. M.; El Ashry E. S. H.; El Tamany E. S. H.; Abu-Serie M. M.; Abu-Serie M. M.; Teleb M.; Teleb M.; Dömling A.; Dömling A.; Barakat A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg. Chem. 2021, 117, 10542710.1016/j.bioorg.2021.105427. 10.1016/j.bioorg.2021.105427 34794098 Aziz Y. M. A.; Lotfy G.; Said M. M.; El Ashry E. S. H.; El Tamany E. S. H.; Soliman S.; Abu-Serie M. M.; Teleb M.; Yousuf S.; Dömling A. Design, synthesis, chemical and biochemical insights on to novel hybrid spirooxindoles-based p53-MDM2 inhibitors with potential Bcl2 signaling attenuation. Front. Chem. 2021, 9, 73523610.3389/fchem.2021.735236. 10.3389/fchem.2021.735236 PMC8713455 34970530 Chadla N.; Bahia M. S.; Kaur M.; Silakari O. Thiazolidin-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg. Med. Chem. 2015, 23, 2953–2974. 10.1016/j.bmc.2015.03.071. 10.1016/j.bmc.2015.03.071 25890697 Lo Fiego M. J.; Lorenzetti A. S.; Silbestri G. F.; Domini C. E. The use of ultrasound in the South Cone region. Advances in organic and inorganic synthesis and in analytical methods. Ultrason. Sonochem. 2021, 80, 10583410.1016/j.ultsonch.2021.105834. 10.1016/j.ultsonch.2021.105834 PMC8608658 34814046 Thari F. Z.; Tachallait H.; El Alaoui N-E.; Talha A.; Arshad S.; Álvarez E.; Karrouchi K.; Bougrin K. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrason. Sonochem. 2020, 68, 10522210.1016/j.ultsonch.2020.105222. 10.1016/j.ultsonch.2020.105222 32585575 Sharma A.; Priya A.; Kaur M.; Singh A.; Kaur G.; Banerjee B. Ultrasound-assisted synthesis of bioactive S-heterocycles. Synth. Commun. 2021, 51, 3209–3236. 10.1080/00397911.2021.1970775. 10.1080/00397911.2021.1970775 Marc G.; Ionut I.; Pirnau A.; Vlase L.; Vodnar D. C.; Duma M.; Tiperciuc B.; Oniga O. Microwave assisted synthesis of 3,5-disubstituted thiazolidine-2,4-diones with antifungal activity. Design, synthesis, virtual and in vitro antifungal screening. Farmacia 2017, 65, 414–422. Marc G.; Stana A.; Pirnau A.; Vlase L.; Vodnar D. C.; Duma M.; Tiperciuc B.; Oniga O. 3,5-Disubstituted thiazolidine-2,4-diones: Design, Microwave- Assisted synthesis, Antifungal activity and ADMET Screening. SLAS Discovery 2018, 23, 807–814. 10.1177/2472555218759035. 10.1177/2472555218759035 29437525 Nawale S. L.; Avinash S. D. Synthesis and evaluation of novel thiazolidinedione derivatives for antibacterial activity. Der Pharma Chem. 2012, 4, 2270–2277. C.C.G. Molecular
Operating Environment (MOE), Montreal, Canada, 2014. http://www.chemcomp.com. Sala F. A.; Wright G. S. A.; Antonyuk S. V.; Garratt R. C.; Hasnain S. S. Molecular recognition and maturation of SOD1 by its evolutionarily destabilized cognate chaperone hCCS. PLoS Biol. 2019, 17, e300014110.1371/journal.pbio.3000141. 10.1371/journal.pbio.3000141 PMC6383938 30735496 Daina A.; Michielin O.; Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 4271710.1038/srep42717. 10.1038/srep42717 PMC5335600 28256516 Lipinski C. A.; Lombardo F.; Dominy B. W.; Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23, 3–25. 10.1016/S0169-409X(96)00423-1. 10.1016/S0169-409X(96)00423-1 11259830 Veber D. F.; Johnson S. R.; Cheng H.-Y.; Smith B. R.; Ward K. W.; Kopple K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. 10.1021/jm020017n. 10.1021/jm020017n 12036371 Muegge I.; Heald S. L.; Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. 10.1021/jm015507e. 10.1021/jm015507e 11384230 Ghose A. K.; Viswanadhan V. N.; Wendoloski J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. 10.1021/cc9800071. 10.1021/cc9800071 10746014 Banerjee P.; Eckert A. O.; Schrey A. K.; Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, 257–263. 10.1093/nar/gky318. 10.1093/nar/gky318 PMC6031011 29718510 Kumar D.; Narwal S.; Sandhu J. S. Catalyst-free synthesis of highly biologically active 5-arylidene rhodanine and 2,4-thiazolidinedione derivatives using aldonitrones in polyethylene glycol. Int. J. Med. Chem. 2013, 2013, 27353410.1155/2013/273534. 10.1155/2013/273534 PMC4207417 25374689 Da Silva I. M.; Filho J. S.; Santigo P. B. G. S.; Do Egito M. S.; De Souza C. A.; Gouveia F. L.; Ximenes R. M.; Gouveia K. X. F. L.; De Sena K. X. F. R.; De Faria A. R.; Brondani D. J.; De Albuquerque J. F. C. Synthesis and antimicrobial activities of 5-arylidene-thiazolidine-2,4-dione derivatives. BioMed Res. Int. 2014, 2014, 31608210.1155/2014/316082. 10.1155/2014/316082 PMC4033545 24895565 Thirupathi G.; Venkatanarayana M.; Dubey P. K.; Kumari Y. B. Facile and green syntheses of substituted-5-arylidene-2,4-thiazolidinediones. Der Pharma Chem. 2012, 4, 2009–2013. Bhat B. A.; Ponnala S.; Sahu D. P.; Tiwari P.; Tripathi B. K.; Srivastava A. K. Synthesis and antihyperglycemic activity profiles of novel thiazolidinedione derivatives. Bioorg. Med. Chem. 2004, 12, 5857–5864. 10.1016/j.bmc.2004.08.031. 10.1016/j.bmc.2004.08.031 15498661 Graham C. E.; Brocklehurst K.; Pickergill R. W.; Warren M. J. Characterization of retinaldehyde dehydrogenase 3. Biochem. J. 2006, 394, 67–75. 10.1042/BJ20050918. 10.1042/BJ20050918 PMC1386004 16241904 Rotruck J. T.; Pope A. L.; Ganther H. E.; Swanson A. B.; Hafeman D. G.; Hoekstra W. G. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. 10.1126/science.179.4073.588. 10.1126/science.179.4073.588 4686466 Marklund S.; Marklund G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. 10.1111/j.1432-1033.1974.tb03714.x. 10.1111/j.1432-1033.1974.tb03714.x 4215654 35458618 2022 04 26 2022 07 16 1420-3049 27 8 2022 Apr 08 Molecules (Basel, Switzerland) Molecules Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo[4,3-a ]pyrimidinone Acyclo C-Nucleosides Multitarget Agents. 2422 10.3390/molecules27082422 The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a ]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8 ; IC50 = 5.89 nM, 9 ; IC50 = 10.52 nM) and MMP-2 (8 ; IC50 = 17.44 nM, 9 ; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8 ; IC50 = 0.21 µM, 9 ; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50 , thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation. Abd Al Moaty Mohamed Nabil MN 0000-0003-2843-9704 Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. El Ashry El Sayed Helmy ESH Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Awad Laila Fathy LF Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Ibrahim Nihal Ahmed NA Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Abu-Serie Marwa Muhammad MM Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt. Barakat Assem A 0000-0002-7885-3201 Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. Altowyan Mezna Saleh MS 0000-0002-7038-8018 Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia. Teleb Mohamed M Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt. eng PNURSP2022R86 Princess Nourah bint Abdulrahman University Journal Article 2022 04 08 Switzerland Molecules 100964009 1420-3049 0 Antineoplastic Agents 0 Metalloproteins 0 Nucleosides 0 Protein Kinase Inhibitors 0 Pyrimidinones 0 Triazoles EC 2.7.10.1 Vascular Endothelial Growth Factor Receptor-2 EC 3.4.24.24 Matrix Metalloproteinase 2 IM Antineoplastic Agents chemistry pharmacology Cell Line, Tumor Cell Proliferation Drug Screening Assays, Antitumor Humans Matrix Metalloproteinase 2 metabolism Metalloproteins metabolism Molecular Docking Simulation Molecular Structure Nucleosides chemistry pharmacology Protein Kinase Inhibitors pharmacology Pyrimidinones pharmacology Structure-Activity Relationship Triazoles pharmacology Vascular Endothelial Growth Factor Receptor-2 antagonists & inhibitors 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides CAII MMP-2 VEGFR-2 multitarget anticancer agents The authors declare no conflict of interest. 2022 2 10 2022 3 18 2022 4 1 2022 4 23 1 15 2022 4 24 6 0 2022 4 27 6 0 2022 4 8 epublish 35458618 PMC9026109 10.3390/molecules27082422 molecules27082422 Arneth B. Tumor microenvironment. Medicina. 2020;56:15. doi: 10.3390/medicina56010015. 10.3390/medicina56010015 PMC7023392 31906017 Adhikari N., Mukherjee A., Saha A., Jha T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem. 2017;129:72–109. doi: 10.1016/j.ejmech.2017.02.014. 10.1016/j.ejmech.2017.02.014 28219048 Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003;92:827–839. doi: 10.1161/01.RES.0000070112.80711.3D. 10.1161/01.RES.0000070112.80711.3D 12730128 Cathcart J., Pulkoski-Gross A., Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2015;2:26–34. doi: 10.1016/j.gendis.2014.12.002. 10.1016/j.gendis.2014.12.002 PMC4474140 26097889 Forget M.A., Desrosiers R.R., Béliveau R. Physiological roles of matrix metalloproteinases: Implications for tumor growth and metastasis. Can. J. Physiol. Pharmacol. 1999;77:465–480. doi: 10.1139/y99-055. 10.1139/y99-055 10535707 Bhowmick N.A., Neilson E.G., Moses H.L. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–337. doi: 10.1038/nature03096. 10.1038/nature03096 PMC3050735 15549095 Chambers A.F., Matrisian L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 1997;89:1260–1270. doi: 10.1093/jnci/89.17.1260. 10.1093/jnci/89.17.1260 9293916 Das N., Benko C., Gill S.E., Dufour A. The pharmacological TAILS of matrix metalloproteinases and their inhibitors. Pharmaceuticals. 2021;14:31. doi: 10.3390/ph14010031. 10.3390/ph14010031 PMC7823758 33396445 Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020;194:112260. doi: 10.1016/j.ejmech.2020.112260. 10.1016/j.ejmech.2020.112260 32224379 Ayoup M.S., Fouad M.A., Abdel-Hamid H., Abu-Serie M.M., Noby A., Teleb M. Battle tactics against MMP-9; discovery of novel non-hydroxamate MMP-9 inhibitors endowed with PI3K/AKT signaling attenuation and caspase 3/7 activation via Ugi bis-amide synthesis. Eur. J. Med. Chem. 2020;186:111875. doi: 10.1016/j.ejmech.2019.111875. 10.1016/j.ejmech.2019.111875 31740054 Fields G.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells. 2019;8:984. doi: 10.3390/cells8090984. 10.3390/cells8090984 PMC6769477 31461880 Zhong Y., Lu Y.-T., Sun Y., Shi Z.-H., Li N.-G., Tang Y.-P., Duan J.-A. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin. Drug Discov. 2018;13:75–87. doi: 10.1080/17460441.2018.1398732. 10.1080/17460441.2018.1398732 29088927 Nagase H., Woessner J.F. Matrix metalloproteinases. J. Biol. Chem. 1999;274:21491–21494. doi: 10.1074/jbc.274.31.21491. 10.1074/jbc.274.31.21491 10419448 Prudova A., auf dem Keller U., Butler G.S., Overall C.M. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteom. 2010;9:894–911. doi: 10.1074/mcp.M000050-MCP201. 10.1074/mcp.M000050-MCP201 PMC2871422 20305284 Cauwe B., Van den Steen P.E., Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 2007;42:113–185. doi: 10.1080/10409230701340019. 10.1080/10409230701340019 17562450 Egeblad M., Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002;2:161–174. doi: 10.1038/nrc745. 10.1038/nrc745 11990853 Hashimoto G., Inoki I., Fujii Y., Aoki T., Ikeda E., Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J. Biol. Chem. 2002;277:36288–36295. doi: 10.1074/jbc.M201674200. 10.1074/jbc.M201674200 12114504 Chetty C., Lakka S.S., Bhoopathi P., Rao J.S. MMP-2 alters VEGF expression via αVβ3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int. J. Cancer. 2010;127:1081–1095. doi: 10.1002/ijc.25134. 10.1002/ijc.25134 PMC2891576 20027628 Heroult M., Bernard-Pierrot I., Delbe J., Hamma-Kourbali Y., Katsoris P., Barritault D., Papadimitriou E., Plouet J., Courty J. Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene. 2004;23:1745–1753. doi: 10.1038/sj.onc.1206879. 10.1038/sj.onc.1206879 15001987 Tauro M., Lynch C.C. Cutting to the chase: How matrix metalloproteinase-2 activity controls breast-cancer-to-bone metastasis. Cancers. 2018;10:185. doi: 10.3390/cancers10060185. 10.3390/cancers10060185 PMC6025260 29874869 Mboge M.Y., Mahon B.P., McKenna R., Frost S.C. Carbonic anhydrases: Role in pH control and cancer. Metabolites. 2018;8:19. doi: 10.3390/metabo8010019. 10.3390/metabo8010019 PMC5876008 29495652 Aggarwal M., Boone C.D., Kondeti B., McKenna R. Structural annotation of human carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2013;28:267–277. doi: 10.3109/14756366.2012.737323. 10.3109/14756366.2012.737323 23137351 Annan D.A., Maishi N., Soga T., Dawood R., Li C., Kikuchi H., Hojo T., Morimoto M., Kitamura T., Alam M.T., et al. Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell survival under lactic acidosis in the tumor microenvironment. Cell Commun. Signal. 2019;17:169. doi: 10.1186/s12964-019-0478-4. 10.1186/s12964-019-0478-4 PMC6918655 31847904 Lenci E., Angeli A., Calugi L., Innocenti R., Carta F., Supuran C.T., Trabocchi A. Multitargeting application of proline-derived peptidomimetics addressing cancer-related human matrix metalloproteinase 9 and carbonic anhydrase II. Eur. J. Med. Chem. 2021;214:113260. doi: 10.1016/j.ejmech.2021.113260. 10.1016/j.ejmech.2021.113260 33581552 Zhang H., Zhuo C., Zhou D., Zhang F., Chen M., Xu S., Chen Z. Association between the expression of carbonic anhydrase II and clinicopathological features of hepatocellular carcinoma. Oncol. Lett. 2019;17:5721–5728. doi: 10.3892/ol.2019.10242. 10.3892/ol.2019.10242 PMC6507413 31186798 Parkkila S., Lasota J., Fletcher J.A., Ou W.B., Kivelä A.J., Nuorva K., Parkkila A.K., Ollikainen J., Sly W.S., Waheed A., et al. Carbonic anhydrase II. A novel biomarker for gastrointestinal stromal tumors. Mod. Pathol. 2010;23:743–750. doi: 10.1038/modpathol.2009.189. 10.1038/modpathol.2009.189 PMC2900582 20081808 Mallory J.C., Crudden G., Oliva A., Saunders C., Stromberg A., Craven R.J. A novel group of genes regulates susceptibility to antineoplastic drugs in highly tumorigenic breast cancer cells. Mol. Pharmacol. 2005;68:1747–1756. doi: 10.1124/mol.105.016519. 10.1124/mol.105.016519 16150928 Bekku S., Mochizuki H., Yamamoto T., Ueno H., Takayama E., Tadakuma T. Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer. Hepato-Gastroenterology. 2000;47:998–1001. 11020863 Parkkila S., Rajaniemi H., Parkkila A.K., Kivelä J., Waheed A., Pastoreková S., Pastorek J., Sly W.S. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:2220–2224. doi: 10.1073/pnas.040554897. 10.1073/pnas.040554897 PMC15781 10688890 Parkkila A.K., Herva R., Parkkila S., Rajaniemi H. Immunohistochemical demonstration of human carbonic anhydrase isoenzyme II in brain tumours. Histochem. J. 1995;27:974–982. doi: 10.1007/BF02389687. 10.1007/BF02389687 8789398 Parkkila S., Parkkila A.K., Juvonen T., Lehto V.P., Rajaniemi H. Immunohistochemical demonstration of the carbonic anhydrase isoenzymes I and II in pancreatic tumours. Histochem. J. 1995;27:133–138. doi: 10.1007/BF00243908. 10.1007/BF00243908 7775197 Zhao D., Pan C., Sun J., Gilbert C., Drews-Elger K., Azzam D.J., Picon-Ruiz M., Kim M., Ullmer W., El-Ashry D., et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 2015;34:3107–3119. doi: 10.1038/onc.2014.257. 10.1038/onc.2014.257 25151964 Jain R.K., Tong R.T., Munn L.L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res. 2007;67:2729–2735. doi: 10.1158/0008-5472.CAN-06-4102. 10.1158/0008-5472.CAN-06-4102 PMC3022341 17363594 Fabian K.L., Storkus W.J. Immunotherapeutic targeting of tumor-associated blood vessels. Tumor Immune Microenviron. Cancer Progress. Cancer Ther. 2017:191–211. doi: 10.1007/978-3-319-67577-0_13. 10.1007/978-3-319-67577-0_13 29275473 Stanković T., Dinić J., Podolski-Renić A., Musso L., Burić S.S., Dallavalle S., Pešić M. Dual inhibitors as a new challenge for cancer multidrug resistance treatment. Curr. Med. Chem. 2019;26:6074–6106. doi: 10.2174/0929867325666180607094856. 10.2174/0929867325666180607094856 29874992 Mokhtari R.B., Homayouni T.S., Baluch N., Morgatskaya E., Kumar S., Das B., Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022. doi: 10.18632/oncotarget.16723. 10.18632/oncotarget.16723 PMC5514969 28410237 Anighoro A., Bajorath J., Rastelli G. Polypharmacology: Challenges and opportunities in drug discovery: Miniperspective. J. Med. Chem. 2014;57:7874–7887. doi: 10.1021/jm5006463. 10.1021/jm5006463 24946140 Blagosklonny M.V. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol. Sci. 2005;26:77–81. doi: 10.1016/j.tips.2004.12.002. 10.1016/j.tips.2004.12.002 15681024 Bianchini F., Calugi C., Ruzzolini J., Menchi G., Calorini L., Guarna A., Trabocchi A. A study of ad-proline peptidomimetic inhibitor of melanoma and endothelial cell invasion through activity towards MMP-2 and MMP-9. MedChemComm. 2015;6:277–282. doi: 10.1039/C4MD00287C. 10.1039/C4MD00287C Tauro M., Loiodice F., Ceruso M., Supuran C.T., Tortorella P. Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Bioorg. Med. Chem. Lett. 2014;24:2617–2620. doi: 10.1016/j.bmcl.2014.04.077. 10.1016/j.bmcl.2014.04.077 24813742 Reich R., Hoffman A., Veerendhar A., Maresca A., Innocenti A., Supuran C.T., Breuer E. Carbamoylphosphonates control tumor cell proliferation and dissemination by simultaneously inhibiting carbonic anhydrase IX and matrix metalloproteinase-2. Toward nontoxic chemotherapy targeting tumor microenvironment. J. Med. Chem. 2012;55:7875–7882. doi: 10.1021/jm300981b. 10.1021/jm300981b 22894736 Esteves M.A., Ortet O., Capelo A., Supuran C.T., Marques S.M., Santos M.A. New hydroxypyrimidinone-containing sulfonamides as carbonic anhydrase inhibitors also acting as MMP inhibitors. Bioorg. Med. Chem. Lett. 2010;20:3623–3627. doi: 10.1016/j.bmcl.2010.04.109. 10.1016/j.bmcl.2010.04.109 20478708 Scozzafava A., Supuran C.T. Carbonic anhydrase and matrix metalloproteinase inhibitors: Sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes. J. Med. Chem. 2000;43:3677–3687. doi: 10.1021/jm000027t. 10.1021/jm000027t 11020282 Haag T., Hughes R.A., Ritter G., Schmidt R.R. Carbohydrate-Based VEGF Inhibitors. Eur. J. Org. Chem. 2007:6016–6033. doi: 10.1002/ejoc.200700698. 10.1002/ejoc.200700698 Cuffaro D., Nuti E., Rossello A. An overview of carbohydrate-based carbonic anhydrase inhibitors. J. Enzym. Inhib. Med. Chem. 2020;35:1906–1922. doi: 10.1080/14756366.2020.1825409. 10.1080/14756366.2020.1825409 PMC7717713 33078634 Cuffaro D., Nuti E., D’Andrea F., Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals. 2020;13:376. doi: 10.3390/ph13110376. 10.3390/ph13110376 PMC7696829 33182755 Said M.A., Eldehna W.M., Nocentini A., Bonardi A., Fahim S.H., Bua S., Soliman D.H., Abdel-Aziz H.A., Gratteri P., Abou-Seri S.M., et al. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2020;185:111843. doi: 10.1016/j.ejmech.2019.111843. 10.1016/j.ejmech.2019.111843 31718943 Mangani S., Liljas A. Crystal structure of the complex between human carbonic anhydrase II and the aromatic inhibitor 1,2,4-triazole. J. Mol. Biol. 1993;232:9–14. doi: 10.1006/jmbi.1993.1365. 10.1006/jmbi.1993.1365 8331673 Nara H., Sato K., Naito T., Mototani H., Oki H., Yamamoto Y., Kuno H., Santou T., Kanzaki N., Terauchi J., et al. Thieno [2,3-d] pyrimidine-2-carboxamides bearing a carboxybenzene group at 5-position: Highly potent, selective, and orally available MMP-13 inhibitors interacting with the S1″ binding site. Bioorg. Med. Chem. 2014;22:5487–5505. doi: 10.1016/j.bmc.2014.07.025. 10.1016/j.bmc.2014.07.025 25192810 El Ashry E.S.H., Awad L.F., Teleb M., Ibrahim N.A., Abu-Serie M.M., Abd Al Moaty M.N. Structure-based design and optimization of pyrimidine-and 1, 2, 4-triazolo [4, 3-a] pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorg. Chem. 2020;96:103616. doi: 10.1016/j.bioorg.2020.103616. 10.1016/j.bioorg.2020.103616 32032847 El Ashry E.S.H., Awad L.F., Badawy M.E.I., Rabea E.I., Ibrahim N.A., Abd Al Moaty M.N. Synthesis, antibacterial, antioxidant, and molecular docking studies of 6-methylpyrimidin-4( 3H )-one and oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives. J. Mol. Struct. 2022;1249:131551. doi: 10.1016/j.molstruc.2021.131551. 10.1016/j.molstruc.2021.131551 Fletcher G.C., Brokx R.D., Denny T.A., Hembrough T.A., Plum S.M., Fogler W.E., Sidor C.F., Bray M.R. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol. Cancer Ther. 2011;10:126–137. doi: 10.1158/1535-7163.MCT-10-0574. 10.1158/1535-7163.MCT-10-0574 21177375 Xiao X.-Y., Patel D.V., Ward J.S., Bray M.R., Agoston G.E., Treston A.M. Therapeutics Inc. (Rockville, MD, USA), Substituted Pyrazole Compounds. US 7,563,787B2. U.S. Patent. 2006 September 29; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. 10.3322/caac.21660 33538338 Murnane M.J., Cai J., Shuja S., McAneny D., Klepeis V., Willett J.B. Active MMP-2 effectively identifies the presence of colorectal cancer. Int. J. Cancer. 2009;125:2893–2902. doi: 10.1002/ijc.24682. 10.1002/ijc.24682 PMC2775048 19551856 Kim D., Rhee S. Matrix metalloproteinase-2 regulates MDA-MB-231 breast cancer cell invasion induced by active mammalian diaphanous-related formin 1. Mol. Med. Rep. 2016;14:277–282. doi: 10.3892/mmr.2016.5282. 10.3892/mmr.2016.5282 27177153 Liu J., Li X., Huang J., Liu Y. Matrix metalloproteinase 2 knockdown suppresses the proliferation of HepG2 and Huh7 cells and enhances the cisplatin effect. Open Med. 2019;14:384–391. doi: 10.1515/med-2019-0039. 10.1515/med-2019-0039 PMC6534103 31157304 Waterman E.A., Cross N.A., Lippitt J.M., Cross S.S., Rehman I., Holen I., Hamdy F.C., Eaton C.L. The antibody MAB8051 directed against osteoprotegerin detects carbonic anhydrase II: Implications for association studies with human cancers. Int. J. Cancer. 2007;121:1958–1966. doi: 10.1002/ijc.22946. 10.1002/ijc.22946 17631639 Mahfouz N., Tahtouh R., Alaaeddine N., El Hajj J., Sarkis R., Hachem R., Raad I., Hilal G. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS ONE. 2017;12:e0179202. doi: 10.1371/journal.pone.0179202. 10.1371/journal.pone.0179202 PMC5466359 28594907 Di Benedetto M., Toullec A., Buteau-Lozano H., Abdelkarim M., Vacher S., Velasco G., Christofari M., Pocard M., Bieche I., Perrot-Applanat M. MDA-MB-231 breast cancer cells overexpressing single VEGF isoforms display distinct colonisation characteristics. Br. J. Cancer. 2015;113:773–785. doi: 10.1038/bjc.2015.267. 10.1038/bjc.2015.267 PMC4559830 26196186 Liu L., Qin S., Zheng Y., Han L., Zhang M., Luo N., Liu Z., Gu N., Gu X., Yin X. Molecular targeting of VEGF/VEGFR signaling by the anti-VEGF monoclonal antibody BD0801 inhibits the growth and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo. Cancer Biol. Ther. 2017;18:166–176. doi: 10.1080/15384047.2017.1282019. 10.1080/15384047.2017.1282019 PMC5389424 28368741 Wang R.J., Yang C.H., Hu M.L. 1-Deoxynojirimycin inhibits metastasis of B16F10 melanoma cells by attenuating the activity and expression of matrix metalloproteinases-2 and-9 and altering cell surface glycosylation. J. Agric. Food Chem. 2010;58:8988–8993. doi: 10.1021/jf101401b. 10.1021/jf101401b 23654233 Buchieri M.V., Riafrecha L.E., Rodríguez O.M., Vullo D., Morbidoni H.R., Supuran C.T., Colinas P.A. Inhibition of the β-carbonic anhydrases from Mycobacterium tuberculosis with C-cinnamoyl glycosides: Identification of the first inhibitor with anti-mycobacterial activity. Bioorg. Med. Chem. Lett. 2013;23:740–743. doi: 10.1016/j.bmcl.2012.11.085. 10.1016/j.bmcl.2012.11.085 23265903 Shaban M.E., Taha M.M., Nasr A.Z., Morgaan A.A. Synthesis of acyclo C-nucleosides:3-(alditol-1-yl)-5-methyl-7-oxo-1,2,4-triazolo[4,3-a]pyrimidines. Pharmazie. 1995;50:784–788. 10723764 Abdel-Aal M.T., El-Sayed W.A., AH A.A., El Ashry E.S. Synthesis of some functionalized arylaminomethyl-1,2,4-triazoles,1,3,4-oxa-and thiadiazoles. Die Pharm. 2003;58:788–792. doi: 10.1002/chin.200409108. 10.1002/chin.200409108 14664332 El Ashry E.S.H., Abdul-Ghani M.M. Reaction of Sugars with 2-Hydrazinopyridine, Precursors for Seco C-Nucleosides of 1, 2, 4-Triazolo [4, 3-a] pyridine. Nucleosides Nucleotides Nucleic Acids. 2004;23:567–580. doi: 10.1081/NCN-120030715. 10.1081/NCN-120030715 15113024 Kett W.C., Batley M., Redmond J.W. Heterocyclic derivatives of sugars: An NMR study of the formation of 1-glycosyl-3, 5-dimethyl-1 H-pyrazoles from hydrazones. Carbohydr. Res. 1997;299:129–141. doi: 10.1016/S0008-6215(97)00007-4. 10.1016/S0008-6215(97)00007-4 11086696 Saeed M.S., Williams J.M. Model studies pertaining to the hydrazinolysis of glycopeptides and glycoproteins: Hydrazinolysis of the 1-N-acetyl and 1-N-(l-β-aspartyl) derivatives of 2-acetamido-2-deoxy-β-d-glucopyranosylamine. Carbohydr. Res. 1980;84:83–94. doi: 10.1016/S0008-6215(00)85432-4. 10.1016/S0008-6215(00)85432-4 El Sayed H., Awad L.F., Ghani M.A., Atta A.I. Reaction of monosaccharides with 2-pyridylcarboxamidrazone and determination of the nature of products. Arkivoc. 2005;15:97–104. Petráková E., Kováč P. Synthesis of new methyl O-acetyl-α-and-β-d-xylopyranosides. Carbohydr. Res. 1982;101:141–147. doi: 10.1016/S0008-6215(00)80804-6. 10.1016/S0008-6215(00)80804-6 El Ashry E.S.H., Awad L.F., Nasr M., Kassem A.A., Zakaria M.A. Novel Synthesis of N-(1, 3-Dioxoisoindol-2-yl) aminothiocarbohydrazide, and its Arylidenes and Glycosylidines as Precursors for Hybrids with Thiadiazoline Ring. Equilibration of the Glycosylidine Open Chain with the Cyclic Structures and Conformation of the Acyclic Analogues. Curr. Org. Synth. 2018;15:1005–1013. Alho M.A.M., D’Accorso N.B. Behavior of free sugar thiosemicarbazones toward heterocyclization reactions. Carbohydr. Res. 2000;328:481–488. doi: 10.1016/S0008-6215(00)00127-0. 10.1016/S0008-6215(00)00127-0 11093704 Bundle D.R., Lemieux R.U. Determination of Anomeric configuration by NMR. Methods Carbohydr. Chem. 1976;7:79–86. Choudhury A.K., Roy N. Synthesis of some galactofuranosyl disaccharides using a galactofuranosyl trichloroacetimidate as donor. Carbohydr. Res. 1998;308:207–211. doi: 10.1016/S0008-6215(98)00062-7. 10.1016/S0008-6215(98)00062-7 El Sayed H., Awad L.F., Winkler M. A new approach to the synthesis of nucleosides of 1,2,4-triazole. J. Chem. Soc. Perkin Trans. 1. 2000;5:829–834. doi: 10.1039/A904200H. 10.1039/A904200H Reiter J., Bongo L., Dyortsok P. Structure elucidation of isomeric 1,2,4-triazolopyrimidinones. Tetrahedron. 1987;43:2497–2504. doi: 10.1016/S0040-4020(01)81656-2. 10.1016/S0040-4020(01)81656-2 Mohamed M.A., Abu-Alola L.M., Al-Zaidi O.N., Saad H.A. Cyclocondensation reactions of hydrazonoyl chlorides with some azines: Synthesis of new fused heterocycles of expected microbiological activity. Int. J. Org. Chem. 2016;7:12–24. doi: 10.4236/ijoc.2017.71002. 10.4236/ijoc.2017.71002 Chernyshev V.M., Astakhov A.V., Starikova Z.A. Reaction of 1-substituted 3, 5-diamino-1, 2, 4-triazoles with β-keto esters: Synthesis and new rearrangement of mesoionic 3-amino-2H [1,2,4] triazolo-[4,3-a] pyrimidin-5-ones. Tetrahedron. 2010;66:3301–3313. doi: 10.1016/j.tet.2010.03.009. 10.1016/j.tet.2010.03.009 Rizk S.A., El-Naggar A.M., El-Badawy A.A. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents. J. Mol. Struct. 2018;1155:720–733. doi: 10.1016/j.molstruc.2017.11.066. 10.1016/j.molstruc.2017.11.066 Awad L.F., El Sayed H. Synthesis and conformational analysis of seco C-nucleosides and their diseco double-headed analogues of the 1,2,4-triazole, 1,2,4-triazolo[3,4-b]1,3,4-thiadiazole. Carbohydr. Res. 1998;312:9–22. doi: 10.1016/S0008-6215(98)00205-5. 10.1016/S0008-6215(98)00205-5 Rizk O.H., Teleb M., Abu-Serie M.M., Shaaban O.G. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation. Bioorg. Chem. 2019;92:103189. doi: 10.1016/j.bioorg.2019.103189. 10.1016/j.bioorg.2019.103189 31473473 Ayoup M.S., Wahby Y., Abdel-Hamid H., Teleb M., Abu-Serie M.M., Noby A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur. J. Med. Chem. 2019;168:340–356. doi: 10.1016/j.ejmech.2019.02.051. 10.1016/j.ejmech.2019.02.051 30826510 Zhang P.L., Liu L., Li X. MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate VEGFA. Biomed. Pharmacother. 2020;123:109751. doi: 10.1016/j.biopha.2019.109751. 10.1016/j.biopha.2019.109751 31958751 Lee H., Son J., Na C.-B., Yi G., Koo H., Park J.-P. The effects of doxorubicin-loaded liposomes on viability, stem cell surface marker expression and secretion of vascular endothelial growth factor of three-dimensional stem cell spheroids. Exp. Ther. Med. 2018;15:4950–4960. doi: 10.3892/etm.2018.6064. 10.3892/etm.2018.6064 PMC5958669 29805519 Duyndam M.C.A., van Berkel M.P.A., Dorsman J.C., Rockx D.A.P., Pinedo H.M., Boven E. Cisplatin and Doxorubicin Repress Vascular Endothelial Growth Factor Expression and Differentially Down-Regulate Hypoxia-Inducible Factor I Activity in Human Ovarian Cancer Cells. Biochem. Pharmacol. 2007;74:191–201. doi: 10.1016/j.bcp.2007.04.003. 10.1016/j.bcp.2007.04.003 17498666 Ayoup M.S., Abu-Serie M.M., Abdel-Hamid H., Teleb M. Beyond direct Nrf2 activation; reinvestigating 1,2,4-oxadiazole scaffold as a master key unlocking the antioxidant cellular machinery for cancer therapy. Eur. J. Med. Chem. 2021;220:113475. doi: 10.1016/j.ejmech.2021.113475. 10.1016/j.ejmech.2021.113475 33901898 Ayoup M.S., Abu-Serie M.M., Awad L.F., Teleb M., Ragab H.M., Amer A. Halting colorectal cancer metastasis via novel dual nanomolar MMP-9/MAO-A quinoxaline-based inhibitors; Design, synthesis, and evaluation. Eur. J. Med. Chem. 2021;222:113558. doi: 10.1016/j.ejmech.2021.113558. 10.1016/j.ejmech.2021.113558 34116327 Keserü G.M., Makara G.M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 2009;8:203–212. doi: 10.1038/nrd2796. 10.1038/nrd2796 19247303 Chen H., Engkvist O., Kogej T. The Practice of Medicinal Chemistry. Academic Press; Cambridge, MA, USA: 2015. Compound properties and their influence on drug quality; pp. 379–393. Arnott J.A., Kumar R., Planey S.L. Lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet. 2013;1:31–36. Albelwi F.F., Teleb M., Abu-Serie M.M., Abd Al Moaty M.N., Alsubaie M.S., Zakaria M.A., El Kilany Y., Aouad M.R., Hagar M., Rezki N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. Int. J. Mol. Sci. 2021;22:10324. doi: 10.3390/ijms221910324. 10.3390/ijms221910324 PMC8508768 34638665 Beyza Öztürk Sarıkaya S., Gülçin İ., Supuran C.T. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem. Biol. Drug Des. 2010;75:515–520. doi: 10.1111/j.1747-0285.2010.00965.x. 10.1111/j.1747-0285.2010.00965.x 20486938 Khodarahmi R., Khateri S., Adibi H., Nasirian V., Hedayati M., Faramarzi E., Soleimani S., Goicoechea H.C., Jalalvand A.R. Chemometrical-electrochemical investigation for comparing inhibitory effects of quercetin and its sulfonamide derivative on human carbonic anhydrase II: Theoretical and experimental evidence. Int. J. Biol. Macromol. 2019;136:377–385. doi: 10.1016/j.ijbiomac.2019.06.093. 10.1016/j.ijbiomac.2019.06.093 31207328 Molecular Operating Environment (MOE), Chemical Computing Group, Montreal, Canada. [(accessed on 23 August 2021)]. Available online: https://www.chemcomp.com. McTigue M., Murray B.W., Chen J.H., Deng Y.L., Solowiej J., Kania R.S. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. USA. 2012;109:18281–18289. doi: 10.1073/pnas.1207759109. 10.1073/pnas.1207759109 PMC3494931 22988103 Traxler P., Furet P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther. 1999;82:195–206. doi: 10.1016/S0163-7258(98)00044-8. 10.1016/S0163-7258(98)00044-8 10454197 Kroe R.R., Regan J., Proto A., Peet G.W., Roy T., Landro L.D., Fuschetto N.G., Pargellis C.A., Ingraham R.H. Thermal denaturation: A method to rank slow binding, high-affinity P38alpha MAP kinase inhibitors. J. Med. Chem. 2003;46:4669–4675. doi: 10.1021/jm030120s. 10.1021/jm030120s 14561086 Dietrich J., Hulme C., Hurley L.H. The design, synthesis, and evaluation of 8 hybrid DFG-out allosteric kinase inhibitors: A structural analysis of the binding interactions of Gleevec, Nexavar, and BIRB-796. Bioorg. Med. Chem. 2010;18:5738–5748. doi: 10.1016/j.bmc.2010.05.063. 10.1016/j.bmc.2010.05.063 20621496 Shahin M.I., Abou El Ella D.A., Ismail N.S., Abouzid K.A. Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold. Bioorg. Chem. 2014;56:16–26. doi: 10.1016/j.bioorg.2014.05.010. 10.1016/j.bioorg.2014.05.010 24922538 Abdullaziz M.A., Abdel-Mohsen H.T., El Kerdawy A.M., Ragab F.A., Ali M.M., Abu-Bakr S.M., Girgis A.S., El Diwani H.I. Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors. Eur. J. Med. Chem. 2017;136:315–329. doi: 10.1016/j.ejmech.2017.04.068. 10.1016/j.ejmech.2017.04.068 28505536 Feng Y., Likos J.J., Zhu L., Woodward H., Munie G., McDonald J.J., Stevens A.M., Howard C.P., De Crescenzo G.A., Welsch D., et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2002;1598:10–23. doi: 10.1016/S0167-4838(02)00307-2. 10.1016/S0167-4838(02)00307-2 12147339 Boriack-Sjodin P.A., Zeitlin S., Christianson D.W., Chen H.H., Crenshaw L., Gross S., Dantanarayana A., Delgado P., May J.A., Dean T. Structural analysis of inhibitor binding to human carbonic anhydrase II. Protein Sci. 1998;7:2483–2489. doi: 10.1002/pro.5560071201. 10.1002/pro.5560071201 PMC2143894 9865942 Esposito E.X., Baran K., Kelly K., Madura J.D. Docking of sulfonamides to carbonic anhydrase II and IV. J. Mol. Graph. Model. 2000;18:283–289. doi: 10.1016/S1093-3263(00)00040-1. 10.1016/S1093-3263(00)00040-1 11021544 El Hawary S.S., Khattab A.R., Marzouk H.S., El Senousy A.S., Alex M.G., Aly O.M., Teleb M., Abdelmohsen U.R. In silico identification of SARS-CoV-2 spike (S) protein–ACE2 complex inhibitors from eight Tecoma species and cultivars analyzed by LC-MS. RSC Adv. 2020;10:43103–43108. PMC9058143 35514923 Abdelmoneem M.A., Abd Elwakil M.M., Khattab S.N., Helmy M.W., Bekhit A.A., Abdulkader M.A., Zaky A., Teleb M., Elkhodairy K.A., Albericio F., et al. Lactoferrin-dual drug nanoconjugate: Synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. Mater. Sci. Eng. C. 2021;118:111422. doi: 10.1016/j.msec.2020.111422. 10.1016/j.msec.2020.111422 33255023 Metawea O.R.M., Abdelmoneem M.A., Haiba N.S., Khalil H.H., Teleb M., Elzoghby A.O., Khafaga A.F., Noreldin A.E., Albericio F., Khattab S.N. A novel ‘smart’PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf. B Biointerfaces. 2021;202:111694. 33740633 VEGFR2 (KDR) Kinase Assay Kit. [(accessed on 20 September 2021)]. Available online: http://bpsbioscience.com/vegfr2-kdr-kinase-assay-kit-40325. MMP2 Inhibitor Screening Assay Kit (Colorimetric) (ab139446) [(accessed on 2 October 2021)]. Available online: https://www.abcam.com/mmp2-inhibitor-screening-assay-kit-colorimetric-ab139446.html. Huang H., Pan X., Ji C., Zeng G., Jiang L., Fu X., Liu J., Hao X., Zhang Y., Tan N. Screening and docking studies of natural phenolic inhibitors of carbonic anhydrase II. Sci. China Ser. B Chem. 2009;52:332–337. doi: 10.1007/s11426-008-0133-1. 10.1007/s11426-008-0133-1 34638665 2021 11 01 2021 11 01 1422-0067 22 19 2021 Sep 25 International journal of molecular sciences Int J Mol Sci Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. 10324 10.3390/ijms221910324 Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2-5.6-fold) and suppressed cyclin D expression (0.8-0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15 . Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria. Albelwi Fawzia Faleh FF Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia. Teleb Mohamed M Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt. Abu-Serie Marwa M MM Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt. Moaty Mohamed Nabil Abd Al MNAA Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Alsubaie Mai S MS Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Zakaria Mohamed A MA 0000-0001-8785-3046 Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. El Kilany Yeldez Y Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Aouad Mohamed Reda MR 0000-0001-7018-6654 Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia. Hagar Mohamed M 0000-0003-0169-7738 Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Rezki Nadjet N 0000-0001-8330-1738 Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia. eng Journal Article 2021 09 25 Switzerland Int J Mol Sci 101092791 1422-0067 0 Antineoplastic Agents 0 Hydroxamic Acids 0 Mannich Bases 0 Matrix Metalloproteinase Inhibitors 0 Triazoles EC 3.4.24.24 Matrix Metalloproteinase 2 EC 3.4.24.35 Matrix Metalloproteinase 9 IM Antineoplastic Agents pharmacology Caco-2 Cells Cell Line, Tumor Cell Proliferation drug effects Drug Screening Assays, Antitumor methods Humans Hydroxamic Acids pharmacology Mannich Bases pharmacology Matrix Metalloproteinase 2 metabolism Matrix Metalloproteinase 9 metabolism Matrix Metalloproteinase Inhibitors pharmacology Microwaves Molecular Docking Simulation Signal Transduction drug effects Structure-Activity Relationship Triazoles pharmacology 1,2,3-triazole 1,2,4-triazole anticancer mannich bases matrix metalloproteinases-2,9 The authors declare no conflict of interest. 2021 8 20 2021 9 17 2021 9 23 2021 10 13 1 2 2021 10 14 6 0 2021 11 3 6 0 2021 9 25 epublish 34638665 PMC8508768 10.3390/ijms221910324 ijms221910324 Stetler-Stevenson W.G., Aznavoorian S., Liotta L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. cell Biol. 1993;9:541–573. doi: 10.1146/annurev.cb.09.110193.002545. 10.1146/annurev.cb.09.110193.002545 8280471 Walker C., Mojares E., del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 2018;19:3028. doi: 10.3390/ijms19103028. 10.3390/ijms19103028 PMC6213383 30287763 Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015. 10.1016/j.cell.2010.03.015 PMC2862057 20371345 Cathcart J., Pulkoski-Gross A., Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2015;2:26–34. doi: 10.1016/j.gendis.2014.12.002. 10.1016/j.gendis.2014.12.002 PMC4474140 26097889 Curran S., Dundas S.R., Buxton J., Leeman M.F., Ramsay R., Murray G.I. Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin. Cancer Res. 2004;10:8229–8234. doi: 10.1158/1078-0432.CCR-04-0424. 10.1158/1078-0432.CCR-04-0424 15623598 Forget M.-A., Desrosiers R.R., Béliveau R. Physiological roles of matrix metalloproteinases: Implications for tumor growth and metastasis. Can. J. Physiol. Pharmacol. 1999;77:465–480. doi: 10.1139/y99-055. 10.1139/y99-055 10535707 Adhikari N., Mukherjee A., Saha A., Jha T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem. 2017;129:72–109. doi: 10.1016/j.ejmech.2017.02.014. 10.1016/j.ejmech.2017.02.014 28219048 Fisher B., Costantino J., Redmond C., Poisson R., Bowman D., Couture J., Dimitrov N.V., Wolmark N., Wickerham D.L., Fisher E.R. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor–positive tumors. N. Engl. J. Med. 1989;320:479–484. doi: 10.1056/NEJM198902233200802. 10.1056/NEJM198902233200802 2644532 Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie. 2005;87:249–263. doi: 10.1016/j.biochi.2004.11.019. 10.1016/j.biochi.2004.11.019 15781312 Bhowmick N.A., Neilson E.G., Moses H.L. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–337. doi: 10.1038/nature03096. 10.1038/nature03096 PMC3050735 15549095 Chambers A.F., Matrisian L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 1997;89:1260–1270. doi: 10.1093/jnci/89.17.1260. 10.1093/jnci/89.17.1260 9293916 Kalluri R., Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer. 2006;6:392–401. doi: 10.1038/nrc1877. 10.1038/nrc1877 16572188 Overall C.M., Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer. 2006;6:227–239. doi: 10.1038/nrc1821. 10.1038/nrc1821 16498445 Baidya S.K., Amin S.A., Jha T. Outline of gelatinase inhibitors as anti-cancer agents: A patent mini-review for 2010-present. Eur. J. Med. Chem. 2020;213:113044. doi: 10.1016/j.ejmech.2020.113044. 10.1016/j.ejmech.2020.113044 33279289 Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020;194:112260. doi: 10.1016/j.ejmech.2020.112260. 10.1016/j.ejmech.2020.112260 32224379 Zhong Y., Lu Y.-T., Sun Y., Shi Z.-H., Li N.-G., Tang Y.-P., Duan J.-A. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin. Drug Discov. 2018;13:75–87. doi: 10.1080/17460441.2018.1398732. 10.1080/17460441.2018.1398732 29088927 Fischer T., Senn N., Riedl R. Frontispiece: Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chem.–A Eur. J. 2019;25 doi: 10.1002/chem.201805361. 10.1002/chem.201805361 30720221 Rao B.G. Recent developments in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des. 2005;11:295–322. doi: 10.2174/1381612053382115. 10.2174/1381612053382115 15723627 Breuer E., Frant J., Reich R. Recent non-hydroxamate matrix metalloproteinase inhibitors. Expert Opin. Ther. Pat. 2005;15:253–269. doi: 10.1517/13543776.15.3.253. 10.1517/13543776.15.3.253 Danishefsky S.J., Allen J.R. Vom Labor zur Klinik: Vollsynthetische Antitumor-Impfstoffe auf Kohlenhydratbasis. Angew. Chem. 2000;112:882–912. doi: 10.1002/(SICI)1521-3757(20000303)112:5<882::AID-ANGE882>3.0.CO;2-1. 10.1002/(SICI)1521-3757(20000303)112:5<882::AID-ANGE882>3.0.CO;2-1 Brown S., Meroueh S.O., Fridman R., Mobashery S. Quest for selectivity in inhibition of matrix metalloproteinases. Curr. Top. Med. Chem. 2004;4:1227–1238. doi: 10.2174/1568026043387854. 10.2174/1568026043387854 15320723 Boström E.A., Tarkowski A., Bokarewa M. Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2009;1793:1894–1900. doi: 10.1016/j.bbamcr.2009.09.008. 10.1016/j.bbamcr.2009.09.008 19770005 Folgueras A.R., Pendas A.M., Sanchez L.M., Lopez-Otin C. Matrix metalloproteinases in cancer: From new functions to improved inhibition strategies. Int. J. Dev. Biol. 2004;48:411–424. doi: 10.1387/ijdb.041811af. 10.1387/ijdb.041811af 15349816 Dublanchet A.-C., Ducrot P., Andrianjara C., O’Gara M., Morales R., Compère D., Denis A., Blais S., Cluzeau P., Courté K. Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorganic Med. Chem. Lett. 2005;15:3787–3790. doi: 10.1016/j.bmcl.2005.05.079. 10.1016/j.bmcl.2005.05.079 16002291 Johnson A.R., Pavlovsky A.G., Ortwine D.F., Prior F., Man C.-F., Bornemeier D.A., Banotai C.A., Mueller W.T., McConnell P., Yan C. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem. 2007;282:27781–27791. doi: 10.1074/jbc.M703286200. 10.1074/jbc.M703286200 17623656 Li J.J., Nahra J., Johnson A.R., Bunker A., O’Brien P., Yue W.-S., Ortwine D.F., Man C.-F., Baragi V., Kilgore K. Quinazolinones and pyrido [3, 4-d] pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. J. Med. Chem. 2008;51:835–841. doi: 10.1021/jm701274v. 10.1021/jm701274v 18251495 Morales R., Perrier S., Florent J.-M., Beltra J., Dufour S., De Mendez I., Manceau P., Tertre A., Moreau F., Compere D. Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12. J. Mol. Biol. 2004;341:1063–1076. doi: 10.1016/j.jmb.2004.06.039. 10.1016/j.jmb.2004.06.039 15289103 Ayoup M.S., Fouad M.A., Abdel-Hamid H., Abu-Serie M.M., Noby A., Teleb M. Battle tactics against MMP-9; discovery of novel non-hydroxamate MMP-9 inhibitors endowed with PI3K/AKT signaling attenuation and caspase 3/7 activation via Ugi bis-amide synthesis. Eur. J. Med. Chem. 2020;186:111875. doi: 10.1016/j.ejmech.2019.111875. 10.1016/j.ejmech.2019.111875 31740054 Kharb R., Sharma P.C., Yar M.S. Pharmacological significance of triazole scaffold. J. Enzym. Inhib. Med. Chem. 2011;26:1–21. doi: 10.3109/14756360903524304. 10.3109/14756360903524304 20583859 Maddila S., Pagadala R., Jonnalagadda S.B. 1, 2, 4-Triazoles: A review of synthetic approaches and the biological activity. Lett. Org. Chem. 2013;10:693–714. doi: 10.2174/157017861010131126115448. 10.2174/157017861010131126115448 Dheer D., Singh V., Shankar R. Medicinal attributes of 1, 2, 3-triazoles: Current developments. Bioorganic Chem. 2017;71:30–54. doi: 10.1016/j.bioorg.2017.01.010. 10.1016/j.bioorg.2017.01.010 28126288 Aouad M.R. Efficient eco-friendly solvent-free click synthesis and antimicrobial evaluation of new fluorinated 1, 2, 3-triazoles and their conversion into Schiff Bases. J. Braz. Chem. Soc. 2015;26:2105–2115. doi: 10.5935/0103-5053.20150196. 10.5935/0103-5053.20150196 Aouad M.R. Synthesis and antimicrobial screening of novel thioglycosides and acyclonucleoside analogs carrying 1, 2, 3-triazole and 1, 3, 4-oxadiazole moieties. Nucleosides Nucleotides Nucleic Acids. 2016;35:1–15. doi: 10.1080/15257770.2015.1109098. 10.1080/15257770.2015.1109098 26810028 Rezki N., Mayaba M.M., Al-blewi F.F., Aouad M.R. Click 1, 4-regioselective synthesis, characterization, and antimicrobial screening of novel 1, 2, 3-triazoles tethering fluorinated 1, 2, 4-triazole and lipophilic side chain. Res. Chem. Intermed. 2017;43:995–1011. doi: 10.1007/s11164-016-2679-4. 10.1007/s11164-016-2679-4 Aouad M.R. Click Synthesis and antimicrobial screening of novel isatin-1, 2, 3-triazoles with piperidine, morpholine, or piperazine moieties. Org. Prep. Proced. Int. 2017;49:216–227. doi: 10.1080/00304948.2017.1320515. 10.1080/00304948.2017.1320515 Aouad M.R., Mayaba M.M., Naqvi A., Bardaweel S.K., Al-Blewi F.F., Messali M., Rezki N. Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1, 2, 4-triazoles carrying 1, 2, 3-triazole scaffold with lipophilic side chain tether. Chem. Cent. J. 2017;11:1–13. doi: 10.1186/s13065-017-0347-4. 10.1186/s13065-017-0347-4 PMC5696273 29159721 Rezki N. Green microwave synthesis and antimicrobial evaluation of novel triazoles. Org. Prep. Proced. Int. 2017;49:525–541. doi: 10.1080/00304948.2017.1384262. 10.1080/00304948.2017.1384262 Rezki Z., Aouad M.R. Green ultrasound-assisted three-component click synthesis of novel 1H-1, 2, 3-triazole carrying benzothiazoles and fluorinated-1, 2, 4-triazole conjugates and their antimicrobial evaluation. Acta Pharm. 2017;67:309–324. doi: 10.1515/acph-2017-0024. 10.1515/acph-2017-0024 28858836 Aouad M.R., Soliman M.A., Alharbi M.O., Bardaweel S.K., Sahu P.K., Ali A.A., Messali M., Rezki N., Al-Soud Y.A. Design, synthesis and anticancer screening of novel benzothiazole-piperazine-1, 2, 3-triazole hybrids. Molecules. 2018;23:2788. doi: 10.3390/molecules23112788. 10.3390/molecules23112788 PMC6278665 30373247 Aouad M.R., Almehmadi M.A., Rezki N., Al-blewi F.F., Messali M., Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1, 2, 3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct. 2019;1188:153–164. doi: 10.1016/j.molstruc.2019.04.005. 10.1016/j.molstruc.2019.04.005 Al-Blewi F.F., Almehmadi M.A., Aouad M.R., Bardaweel S.K., Sahu P.K., Messali M., Rezki N., El Sayed H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1, 2, 3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J. 2018;12:1–14. doi: 10.1186/s13065-018-0479-1. 10.1186/s13065-018-0479-1 PMC6768023 30387018 Rezki N., Almehmadi M.A., Ihmaid S., Shehata A.M., Omar A.M., Ahmed H.E., Aouad M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1, 2, 3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorganic Chem. 2020;103:104133. doi: 10.1016/j.bioorg.2020.104133. 10.1016/j.bioorg.2020.104133 32745759 Almehmadi M.A., Aljuhani A., Alraqa S.Y., Ali I., Rezki N., Aouad M.R., Hagar M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1, 2, 3-triazole conjugates. J. Mol. Struct. 2021;1225:129148. doi: 10.1016/j.molstruc.2020.129148. 10.1016/j.molstruc.2020.129148 Alraqa S.Y., Alharbi K., Aljuhani A., Rezki N., Aouad M.R., Ali I. Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1, 2, 3-triazole molecular hybrids with different pharmacophores. J. Mol. Struct. 2021;1225:129192. doi: 10.1016/j.molstruc.2020.129192. 10.1016/j.molstruc.2020.129192 Ihmaid S.K., Alraqa S.Y., Aouad M.R., Aljuhani A., Elbadawy H.M., Salama S.A., Rezki N., Ahmed H.E. Design of molecular hybrids of phthalimide-triazole agents with potent selective MCF-7/HepG2 cytotoxicity: Synthesis, EGFR inhibitory effect, and metabolic stability. Bioorganic Chem. 2021;111:104835. doi: 10.1016/j.bioorg.2021.104835. 10.1016/j.bioorg.2021.104835 33798850 Aouad M.R., Khan D.J., Said M.A., Al-Kaff N.S., Rezki N., Ali A.A., Bouqellah N., Hagar M. Novel 1, 2, 3-Triazole Derivatives as Potential Inhibitors against Covid-19 Main Protease: Synthesis, Characterization, Molecular Docking and DFT Studies. ChemistrySelect. 2021;6:3468. doi: 10.1002/slct.202100522. 10.1002/slct.202100522 PMC8250976 34230893 Rezki N., Al-Yahyawi A.M., Bardaweel S.K., Al-Blewi F.F., Aouad M.R. Synthesis of novel 2, 5-disubstituted-1, 3, 4-thiadiazoles clubbed 1, 2, 4-triazole, 1, 3, 4-thiadiazole, 1, 3, 4-oxadiazole and/or Schiff base as potential antimicrobial and antiproliferative agents. Molecules. 2015;20:16048–16067. doi: 10.3390/molecules200916048. 10.3390/molecules200916048 PMC6331880 26364633 Aouad M.R. Synthesis, Characterization and antimicrobial evaluation of some new Schiff, Mannich and acetylenic Mannich bases incorporating a 1, 2, 4-triazole nucleus. Molecules. 2014;19:18897–18910. doi: 10.3390/molecules191118897. 10.3390/molecules191118897 PMC6271917 25412038 Fabre B., Filipiak K., Zapico J.M., Díaz N., Carbajo R.J., Schott A.K., Martínez-Alcázar M.P., Suárez D., Pineda-Lucena A., Ramos A. Progress towards water-soluble triazole-based selective MMP-2 inhibitors. Org. Biomol. Chem. 2013;11:6623–6641. doi: 10.1039/c3ob41046c. 10.1039/c3ob41046c 23989288 Kreituss I., Rozenberga E., Zemītis J., Trapencieris P., Romanchikova N., Turks M. Discovery of aziridine-triazole conjugates as selective MMP-2 inhibitors. Chem. Heterocycl. Compd. 2013;49:1108–1117. doi: 10.1007/s10593-013-1351-9. 10.1007/s10593-013-1351-9 Hugenberg V., Breyholz H.-J.R., Riemann B., Hermann S., Schober O., Schäfers M., Gangadharmath U., Mocharla V., Kolb H., Walsh J. A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates:(radio) synthesis and in vitro and first in vivo evaluation. J. Med. Chem. 2012;55:4714–4727. doi: 10.1021/jm300199g. 10.1021/jm300199g 22540974 Özdemir A., Sever B., Altıntop M.D., Temel H.E., Atlı Ö., Baysal M., Demirci F. Synthesis and evaluation of new oxadiazole, thiadiazole, and triazole derivatives as potential anticancer agents targeting MMP-9. Molecules. 2017;22:1109. doi: 10.3390/molecules22071109. 10.3390/molecules22071109 PMC6152322 28677624 Abbasi M.A., Yu S.-M., Siddiqui S.Z., Kim S.J., Raza H., Hassan M., Butt A.R.S., Shah S.A.A., Seo S.-Y. Synthesis and exploration of a novel chlorobenzylated 2-aminothiazole-phenyltriazole hybrid as migratory inhibitor of B16F10 in melanoma cells. Toxicol. Rep. 2019;6:897–903. doi: 10.1016/j.toxrep.2019.08.016. 10.1016/j.toxrep.2019.08.016 PMC6727243 31516842 Yurttaş L., Evren A.E., Kubilay A., Temel H.E., Çiftçi G.A. 3, 4, 5-Trisubstituted-1, 2, 4-triazole Derivatives as Antiproliferative Agents: Synthesis, In vitro Evaluation and Molecular Modelling. Lett. Drug Des. Discov. 2020;17:1502–1515. doi: 10.2174/1570180817999200712190831. 10.2174/1570180817999200712190831 Yurttaş L., Evren A.E., Kubilay A., Temel H.E. Synthesis of New 1, 2, 4-Triazole Derivatives and Investigation of Their Matrix Metalloproteinase-9 (MMP-9) Inhibition Properties. Acta Pharm. Sci. 2021;59:216–232. Patani G.A., LaVoie E.J. Bioisosterism: A rational approach in drug design. Chem. Rev. 1996;96:3147–3176. doi: 10.1021/cr950066q. 10.1021/cr950066q 11848856 Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. 10.1016/0022-1759(83)90303-4 6606682 El Ashry E.S.H., Awad L.F., Teleb M., Ibrahim N.A., Abu-Serie M.M., Abd Al Moaty M.N. Structure-based design and optimization of pyrimidine-and 1, 2, 4-triazolo [4, 3-a] pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorganic Chem. 2020;96:103616. doi: 10.1016/j.bioorg.2020.103616. 10.1016/j.bioorg.2020.103616 32032847 Rizk O.H., Teleb M., Abu-Serie M.M., Shaaban O.G. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation. Bioorganic Chem. 2019;92:103189. doi: 10.1016/j.bioorg.2019.103189. 10.1016/j.bioorg.2019.103189 31473473 Alonso F., Moglie Y., Radivoy G., Yus M. Unsupported copper nanoparticles in the 1, 3-dipolar cycloaddition of terminal alkynes and azides. Eur. J. Org. Chem. 2010;2010:1875–1884. doi: 10.1002/ejoc.200901446. 10.1002/ejoc.200901446 Alkhaldi A.A., Abdelgawad M.A., Youssif B.G., El-Gendy A.O., De Koning H.P. Synthesis, antimicrobial activities and GAPDH docking of novel 1, 2, 3-triazole derivatives. Trop. J. Pharm. Res. 2019;18:1101–1108. doi: 10.4314/tjpr.v18i5.27. 10.4314/tjpr.v18i5.27 Youssif B.G., Abdelrahman M.H. Synthesis and Biological Evaluation of Some New 1, 2, 3-Triazole Derivatives As Anti-microbial Agents. J. Adv. Chem. 2015;11:3473–3484. doi: 10.24297/jac.v11i2.2215. 10.24297/jac.v11i2.2215 Aouad M.R., Messali M., Rezki N., Al-Zaqri N., Warad I. Single proton intramigration in novel 4-phenyl-3-((4-phenyl-1H-1, 2, 3-triazol-1-yl) methyl)-1H-1, 2, 4-triazole-5 (4H)-thione: XRD-crystal interactions, physicochemical, thermal, Hirshfeld surface, DFT realization of thiol/thione tautomerism. J. Mol. Liq. 2018;264:621–630. doi: 10.1016/j.molliq.2018.05.085. 10.1016/j.molliq.2018.05.085 Prayong P., Barusrux S., Weerapreeyakul N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia. 2008;79:598–601. doi: 10.1016/j.fitote.2008.06.007. 10.1016/j.fitote.2008.06.007 18664377 Ayoup M.S., Wahby Y., Abdel-Hamid H., Teleb M., Abu-Serie M.M., Noby A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur. J. Med. Chem. 2019;168:340–356. doi: 10.1016/j.ejmech.2019.02.051. 10.1016/j.ejmech.2019.02.051 30826510 Aubrey B.J., Kelly G.L., Janic A., Herold M.J., Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–113. doi: 10.1038/cdd.2017.169. 10.1038/cdd.2017.169 PMC5729529 29149101 Güllülü Ö., Hehlgans S., Rödel C., Fokas E., Rödel F. Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer—A Promising Signaling Network for Therapeutic Interventions. Cancers. 2021;13:624. doi: 10.3390/cancers13040624. 10.3390/cancers13040624 PMC7916307 33557398 Sp N., Kang D.Y., Lee J.-M., Bae S.W., Jang K.-J. Potential Antitumor Effects of 6-Gingerol in p53-Dependent Mitochondrial Apoptosis and Inhibition of Tumor Sphere Formation in Breast Cancer Cells. Int. J. Mol. Sci. 2021;22:4660. doi: 10.3390/ijms22094660. 10.3390/ijms22094660 PMC8124719 33925065 Di Minin G., Bellazzo A., Dal Ferro M., Chiaruttini G., Nuzzo S., Bicciato S., Piazza S., Rami D., Bulla R., Sommaggio R. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell. 2014;56:617–629. doi: 10.1016/j.molcel.2014.10.013. 10.1016/j.molcel.2014.10.013 25454946 Junk D.J., Vrba L., Watts G.S., Oshiro M.M., Martinez J.D., Futscher B.W. Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia. 2008;10:450–461. doi: 10.1593/neo.08120. 10.1593/neo.08120 PMC2373910 18472962 Laka K., Mapheto K., Mbita Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol. Rep. 2021;8:1265–1279. doi: 10.1016/j.toxrep.2021.06.015. 10.1016/j.toxrep.2021.06.015 PMC8233163 34195018 Montalto F.I., De Amicis F. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020;9:2648. doi: 10.3390/cells9122648. 10.3390/cells9122648 PMC7763888 33317149 Molecular Operating Environment (MOE) CCG. Montreal, Canada. [(accessed on 10 July 2021)]. Available online: http://www.chemcomp.com. Feng Y., Likos J.J., Zhu L., Woodward H., Munie G., McDonald J.J., Stevens A.M., Howard C.P., De Crescenzo G.A., Welsch D. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2002;1598:10–23. doi: 10.1016/S0167-4838(02)00307-2. 10.1016/S0167-4838(02)00307-2 12147339 Rowsell S., Hawtin P., Minshull C.A., Jepson H., Brockbank S.M., Barratt D.G., Slater A.M., McPheat W.L., Waterson D., Henney A.M. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 2002;319:173–181. doi: 10.1016/S0022-2836(02)00262-0. 10.1016/S0022-2836(02)00262-0 12051944 Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:1–13. PMC5335600 28256516 [(accessed on 20 July 2021)]. Available online: https://preadmet.bmdrc.kr/adme. Banerjee P., Eckert A.O., Schrey A.K., Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:W257–W263. doi: 10.1093/nar/gky318. 10.1093/nar/gky318 PMC6031011 29718510 Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. 10.1016/S0169-409X(96)00423-1 11259830 Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. 10.1021/jm020017n 12036371 Egan W.J., Merz K.M., Baldwin J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000;43:3867–3877. doi: 10.1021/jm000292e. 10.1021/jm000292e 11052792 Yee S. In Vitro Permeability Across Caco-2 Cells (Colonic) Can Predict In Vivo (Small Intestinal) Absorption in Man—Fact or Myth. Pharm. Res. 1997;14:763–766. doi: 10.1023/A:1012102522787. 10.1023/A:1012102522787 9210194 Al-Hamdani U.J., Abbo H.S., Al-Jaber A.A., Titinchi S.J. New azo-benzothiazole based liquid crystals: Synthesis and study of the effect of lateral substituents on their liquid crystalline behaviour. Liq. Cryst. 2020;47:2257–2267. doi: 10.1080/02678292.2020.1766134. 10.1080/02678292.2020.1766134 Ma X.-L., Chen C., Yang J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin. 2005;26:500–512. doi: 10.1111/j.1745-7254.2005.00068.x. 10.1111/j.1745-7254.2005.00068.x 15780201 Yamashita S., Furubayashi T., Kataoka M., Sakane T., Sezaki H., Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 2000;10:195–204. doi: 10.1016/S0928-0987(00)00076-2. 10.1016/S0928-0987(00)00076-2 10767597 Irvine J.D., Takahashi L., Lockhart K., Cheong J., Tolan J.W., Selick H.E., Grove J.R. MDCK (Madin–Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999;88:28–33. doi: 10.1021/js9803205. 10.1021/js9803205 9874698 Yazdanian M., Glynn S.L., Wright J.L., Hawi A. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res. 1998;15:1490. doi: 10.1023/A:1011930411574. 10.1023/A:1011930411574 9755906 32032847 2021 02 24 2021 02 24 1090-2120 96 2020 Mar Bioorganic chemistry Bioorg Chem Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. 103616 103616 10.1016/j.bioorg.2020.103616 S0045-2068(19)31828-0 Recently, interest in matrix metalloproteinases (MMPs) -10 and -13 has been revitalized with the growing knowledge on their relevance within the MMPs network and significance of their inhibition for treatment of various diseases like arthritis, cancer, atherosclerosis and Alzheimer. Within this approach, dual MMP-10/13 inhibition was disclosed as new approach for targeted polypharmacology. While several efficient MMP-13 inhibitors are known, very few potent and selective MMP-10 inhibitors were reported. This study describes the design, synthesis and optimization of novel MMP-10/13 inhibitors with enhanced MMP-10 potency and selectivity towards polypharmacology. Starting with a lead fused pyrimidine-based MMP-13 inhibitor with weak MMP-10 inhibition, a structure-based design of pyrimidine and fused pyrimidine scaffolds was rationalized to enhance activity against MMP-10 in parallel with MMP-13. Firstly, a series of 6-methyl pyrimidin-4-one hydrazones 6-10 was synthesized via conventional and ultrasonic-assisted methods, then evaluated for MMP-10/13 inhibition. The most active derivative 9 exhibited acceptable dual potency with 7-fold selectivity for MMP-10 (IC50 = 53 nM) over MMP-13. Such hydrazones were then cyclized to the corresponding isomeric 1,2,4-triazolo[4,3-a]pyrimidines 12-19. Their MMP-10/13 inhibition assay revealed, in most cases, superior dual activities with general MMP-10 selectivity compared to the corresponding precursors 6-10. In addition, a clear structure activity relationship trend was deduced within the identified regioisomers, where the 5-oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives 15 and 16 were far more active against MMP-10/13 than their regioisomers 12 and 13. Remarkably, the p-bromophenyl derivative 16 exhibited the highest MMP-10 inhibition (IC50 = 24 nM), whereas the p-methoxy derivative 18 was the most potent MMP-13 inhibitor (IC50 = 294 nM). Moreover, 16 exhibited 19-fold selectivity for MMP-10 over MMP-13, 10-fold over MMP-9, and 29-fold over MMP-7. Docking studies were performed to provide reasonable explanation for structure-activity relationships and isoform selectivity. 16 and 18 were then evaluated for their anticancer activities against three human cancers to assess their therapeutic potential at cellular level via MTT assay. Both compounds exhibited superior anticancer activities compared to quercetin. Their in silico ligand efficiency metrics, physicochemical properties and ADME parameters were drug-like. Guided by such findings that point to 16 as the most promising compound in this study, further structure optimization was carried out via photoirradiation-mediated Dimroth rearrangement of the inactive triazolopyrimidine 13 to its potent regioisomer 16. Copyright © 2020 Elsevier Inc. All rights reserved. El Ashry El Sayed Helmy ESH Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Electronic address: eelashry60@hotmail.com. Awad Laila Fathy LF Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Teleb Mohamed M Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt. Ibrahim Nihal Ahmed NA Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Abu-Serie Marwa M MM Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt. Abd Al Moaty Mohamed Nabil MN Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Electronic address: mohamednabil_sc_chem@yahoo.com. eng Journal Article 2020 01 25 United States Bioorg Chem 1303703 0045-2068 0 1,2,4-triazolo(3,4-a)pyridine 0 Matrix Metalloproteinase Inhibitors 0 Pyridines 0 Triazoles EC 3.4.24.- MMP13 protein, human EC 3.4.24.- Matrix Metalloproteinase 13 EC 3.4.24.22 MMP10 protein, human EC 3.4.24.22 Matrix Metalloproteinase 10 IM Cell Line, Tumor Drug Design Drug Screening Assays, Antitumor Humans Matrix Metalloproteinase 10 metabolism Matrix Metalloproteinase 13 metabolism Matrix Metalloproteinase Inhibitors chemistry pharmacology Molecular Docking Simulation Neoplasms drug therapy metabolism Polypharmacology Pyridines chemistry pharmacology Structure-Activity Relationship Triazoles chemistry pharmacology Anticancer Dimroth rearrangement MMP-10/13 Polypharmacology Pyrimidine Triazolopyrimidine 2019 10 28 2020 1 20 2020 1 22 2020 2 8 6 0 2021 2 25 6 0 2020 2 8 6 0 ppublish 32032847 10.1016/j.bioorg.2020.103616 S0045-2068(19)31828-0 trying2...
Publications by Mohamed Nabil Abd Al Moaty | LitMetric
Publications by authors named "Mohamed Nabil Abd Al Moaty"
Based on the "canonical" view of reactive oxygen species' (ROS) contribution to carcinogenesis, ROS induce oxidative stress and promote various tumor progression events. However, tumor cells also need to defend themselves against oxidative damage. This "heresy" was supported by several recent studies underlining the role of cellular antioxidant capacity in promoting metastasis and resistance to chemotherapy.
View Article and Find Full Text PDF
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents.
View Article and Find Full Text PDF
Int J Mol Sci
September 2021
Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates.
View Article and Find Full Text PDF
Recently, interest in matrix metalloproteinases (MMPs) -10 and -13 has been revitalized with the growing knowledge on their relevance within the MMPs network and significance of their inhibition for treatment of various diseases like arthritis, cancer, atherosclerosis and Alzheimer. Within this approach, dual MMP-10/13 inhibition was disclosed as new approach for targeted polypharmacology. While several efficient MMP-13 inhibitors are known, very few potent and selective MMP-10 inhibitors were reported.
View Article and Find Full Text PDF