trying...
4101MCID_676f086a6ad28246900a9297 35755340 Mohamed Nabil Abd Al Moaty[author] Moaty, Mohamed Nabil Abd Al[Full Author Name] OR Abd Al Moaty, Mohamed Nabil[Full Author Name] moaty, mohamed nabil abd al[Author] OR abd al moaty, mohamed nabil[Author] trying2...
trying...
3575534020220716
2470-13437242022Jun21ACS omegaACS OmegaHarnessing ROS-Induced Oxidative Stress for Halting Colorectal Cancer via Thiazolidinedione-Based SOD Inhibitors.212672127921267-2127910.1021/acsomega.2c02410Based on the "canonical" view of reactive oxygen species' (ROS) contribution to carcinogenesis, ROS induce oxidative stress and promote various tumor progression events. However, tumor cells also need to defend themselves against oxidative damage. This "heresy" was supported by several recent studies underlining the role of cellular antioxidant capacity in promoting metastasis and resistance to chemotherapy. Accordingly, harnessing the ROS-induced oxidative stress via selective suppression of the cancer antioxidant defense machinery has been launched as an innovative anticancer strategy. Within this approach, pharmacological inhibition of superoxide dismutases (SODs), the first-line defense antioxidant enzymes for cancer cells, selectively kills tumor cells and circumvents their acquired resistance. Various SOD inhibitors have been introduced, of which some were tolerated in clinical trials. However, the hit SOD inhibitors belong to diverse chemical classes and lack comprehensive structure-activity relationships (SAR). Herein, we probe the potential of newly synthesized benzylidene thiazolidinedione derivatives to inhibit SOD in colorectal cancer with special emphasis on their effects on correlated antioxidant enzymes aldehyde dehydrogenase 1 (ALDH1) and glutathione peroxidase (GPx). This may possibly bring a new dawn for utilizing thiazolidinediones (TZDs) in cancer therapy through SOD inhibition mechanisms. The preliminary 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all of the evaluated TZDs exhibited excellent safety profiles on normal human cells, recording an EC100 of up to 47.5-folds higher than that of doxorubicin. Compounds 3c, 6a, and 6e (IC50 = 4.4-4.7 μM) were superior to doxorubicin and other derivatives against Caco-2 colorectal cancer cells within their safe doses. The hit anticancer agents inhibited SOD (IC50 = 97.2-228.8 μM). Then, they were selected for further in-depth evaluation on the cellular level. The anticancer IC50 doses of 3c, 6a, and 6e diminished the antioxidant activities of SOD (by 29.7, 70.1, and 33.3%, respectively), ALDH1A (by 85.92, 95.84, and 86.48%, respectively), and GPX (by 50.17, 87.03, and 53.28%, respectively) in the treated Caco-2 cells, elevating the Caco-2 cellular content of ROS by 21.42, 7.863, and 8.986-folds, respectively. Docking simulations were conducted to display their possible binding modes and essential structural features. Also, their physicochemical parameters and pharmacokinetic profiles formulating drug-likeness were computed.© 2022 The Authors. Published by American Chemical Society.Abd Al MoatyMohamed NabilMN0000-0003-2843-9704Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.El AshryEl Sayed HESH0000-0001-5480-239XChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.AwadLaila FathyLF0000-0001-9521-5511Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.MostafaAsmaaAChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.Abu-SerieMarwa MMMMedical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt.TelebMohamedMDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.engJournal Article20220607
United StatesACS Omega1016916582470-1343The authors declare no competing financial interest.
202241820225262022627349202262860202262861202267epublish35755340PMC921910310.1021/acsomega.2c02410Hanahan D.; Weinberg R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646–674. 10.1016/j.cell.2011.02.013.10.1016/j.cell.2011.02.01321376230Azad M. B.; Chen Y.; Gibson S. B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid. Redox Signaling 2009, 11, 777–790. 10.1089/ars.2008.2270.10.1089/ars.2008.227018828708Sosa V.; Moliné T.; Somoza R.; Paciucci R.; Kondoh H.; Leonart M. E. Oxidative stress and cancer: an overview. Ageing Res. Rev. 2013, 12, 376–390. 10.1016/j.arr.2012.10.004.10.1016/j.arr.2012.10.00423123177Sashi Papu John A. M.; Ankem M. K.; Damodaran C. Oxidative Stress: A Promising Target for Chemoprevention. Curr. Pharmacol. Rep. 2016, 2, 73–81. 10.1007/s40495-016-0052-3.10.1007/s40495-016-0052-3PMC482786627088073Thapa D.; Ghosh R. Antioxidants for prostate cancer chemoprevention: Challenges and opportunities. Biochem. Pharmacol. 2012, 83, 1319–1330. 10.1016/j.bcp.2011.12.027.10.1016/j.bcp.2011.12.02722248733Mohsenzadegan M.; Farhad S.; Mohammad M. F.; Majid K. Anti-Oxidants as Chemopreventive Agents in Prostate Cancer: A Gap Between Preclinical and Clinical Studies. Recent Pat. Anti-Cancer Drug Discovery 2018, 13, 224–239. 10.2174/1574892813666180213164700.10.2174/157489281366618021316470029446748Wattenberg L. W. Chemoprevention of cancer. Cancer Res. 1985, 45, 1–8.3880665Piccolella S.; Pacifico S. Plant-derived polyphenols: a chemopreventive and chemoprotectant worth-exploring resource in toxicology. Adv. Mol. Toxicol. 2015, 161–214. 10.1016/B978-0-12-802229-0.00005-0.10.1016/B978-0-12-802229-0.00005-0Postovit L.; Widmann C.; Huang P.; Gibson S. B. Harenssing Oxidative Stress as an Innovative Target for Cancer Therapy. Oxid. Med. Cell. Longevity 2018, 2018, 613573910.1155/2018/6135739.10.1155/2018/6135739PMC599429129977457Pani G.; Colavitti R.; Bedogni B.; Fusco S.; Ferraro D.; Borrello S.; Galeotti T. Mitochondrial superoxide dismutase: a promising target for new anticancer therapies. Curr. Med. Chem. 2004, 11, 1299–1308. 10.2174/0929867043365297.10.2174/092986704336529715134521McCord J. M.; Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. 10.1016/S0021-9258(18)63504-5.10.1016/S0021-9258(18)63504-55389100Margis R.; Dunand C.; Teixeira F. K.; Margis-Pinheiro M. Glutathione peroxidase family–an evolutionary overview. FEBS J. 2008, 275, 3959–3970. 10.1111/j.1742-4658.2008.06542.x.10.1111/j.1742-4658.2008.06542.x18616466Younus H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93.PMC596977629896077Culotta V. C.; Yang M.; O’Halloran T. V. Activation of superoxide dismutases: putting the metal to the pedal. Biochim. Biophys. Acta, Mol. Cell Res. 2006, 1763, 747–758. 10.1016/j.bbamcr.2006.05.003.10.1016/j.bbamcr.2006.05.003PMC163371816828895Irawan B.; Labeda I.; Lusikooy R. E.; Sampetoding S.; Kusuma M. I.; Uwuratuw J. A.; Syarifuddin E.; Faruk M.; et al. Association of superoxide dismutase enzyme with staging and grade of differentiation colorectal cancer: a cross-sectional study. Ann. Med. Surg. 2020, 58, 194–199. 10.1016/j.amsu.2020.08.032.10.1016/j.amsu.2020.08.032PMC750586432994983Li S.; Fu L.; Tian T.; Deng L.; Li H.; Xiao W.; Gong Q. Disrupting SOD1 activity inhibits cell growth and enhances lipid accumulation in nasopharyngeal carcinoma. Cell Commun. Signaling 2018, 16, 2810.1186/s12964-018-0240-3.10.1186/s12964-018-0240-3PMC599655429891006Mulder T. P.; Verspaget H. W.; Janssens A. R.; De Bruin P. A.; Griffioen G.; Lamers C. B. Neoplasia-related changes of two copper (Cu)/zinc (Zn) proteins in the human colon. Free Radical Biol. Med. 1990, 9, 501–506. 10.1016/0891-5849(90)90128-6.10.1016/0891-5849(90)90128-62079229Skórska K. B.; Płaczkowska S.; Prescha A.; Porębska I.; Kosacka M.; Pawełczyk K.; Zabłocka-Słowińska K. Serum Total SOD Activity and SOD1/2 Concentrations in Predicting All-Cause Mortality in Lung Cancer Patients. Pharmaceuticals 2021, 14, 106710.3390/ph14111067.10.3390/ph14111067PMC862256334832849Miranda A.; Janssen L.; Bosman C. B.; van Duijn W.; Oostendorp-van de Ruit M. M.; Kubben F. J.; Griffioen G.; Lamers C. B.; Han J.; Van Krieken J. M.; van de Velde C. J. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin. Cancer Res. 2000, 6, 3183–3192.10955802Li W.; Cao L.; Han L.; Xu Q.; Ma Q. Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-κB axis. Int. J. Oncol. 2015, 46, 2613–2620. 10.3892/ijo.2015.2938.10.3892/ijo.2015.293825825208Marikovsky M.; Nevo N.; Vadai E.; Harris-Cerruti C. Cu/Zn superoxide dismutase plays a role in angiogenesis. Int. J. Cancer 2002, 97, 34–41. 10.1002/ijc.1565.10.1002/ijc.156511774241Mendes F.; Pereira E.; Martins D.; Tavares-Silva E.; Pires A. S.; Abrantes A. M.; Figueiredo A.; Botelho M. F. Oxidative stress in bladder cancer: an ally or an enemy?. Mol. Biol. Rep. 2021, 48, 2791–2802. 10.1007/s11033-021-06266-4.10.1007/s11033-021-06266-433733384Arumsari S.; Noor D.; Dewi S.; Syahrani R.; Wanandi S. In vitro transfection of manganese superoxide dismutase small interfering RNA suppresses stemness of human breast cancer stem cells (aldehyde dehydrogenase 1-positive): Focus on OCT4 mRNA expression and mammosphere-forming capacity. J. Nat. Sci., Biol. Med. 2019, 10, S82–S87. 10.4103/jnsbm.JNSBM_113_19].10.4103/jnsbm.JNSBM_113_19]Koppaka V.; Thompson D. C.; Chen Y.; Ellermann M.; Nicolaou K. C.; Juvonen R. O.; Petersen D.; Deitrich R. A.; Hurley T. D.; Vasiliou V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev. 2012, 64, 520–539. 10.1124/pr.111.005538.10.1124/pr.111.005538PMC340083222544865Lowndes S. A.; Adams A.; Timms A.; Fisher N.; Smythe J.; Watt S. M.; Joel S.; Donate F.; Hayward C.; Reich S.; Middleton M.; Mazar A.; Harris A. L. Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors Clin. Cancer Res. 2008, 14, 7526–7534. 10.1158/1078-0432.CCR-08-0315.10.1158/1078-0432.CCR-08-031519010871Lin J.; Beer T. M.; Ryan C. J.; Mathew P.; Wilding G.; Morris M.; Callahan J. A.; Gordon G.; Reich S.; Carducci M. A. A randomized, phase II study of ATN-224 in patients with biochemically relapsed, hormone-naive prostate cancer: a DOD/PCF Prostate Cancer Clinical Trials Consortium trial. J. Clin. Oncol. 2009, 27, 513510.1200/jco.2009.27.15_suppl.5135.10.1200/jco.2009.27.15_suppl.5135Dong X.; Zhang Z.; Zhao J.; Lei J.; Chen Y.; Li X.; Chen H.; Tian J.; Zhang D.; Liu C.; Liu C. The rational design of specific SOD1 inhibitors via copper coordination and their application in ROS signaling research. Chem. Sci. 2016, 7, 6251–6262. 10.1039/C6SC01272H.10.1039/C6SC01272HPMC602420730034766Somwar R.; Shum D.; Djaballah H.; Varmus H. Identification and preliminary characterization of novel small molecules that inhibit growth of human lung adenocarcinoma cells. J. Biomol. Screen. 2009, 14, 1176–1184. 10.1177/1087057109350919.10.1177/1087057109350919PMC314639019887599Somwar R.; Erdjument-Bromage H.; Varmus H. E.; et al. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 16375–16380. 10.1073/pnas.1113554108.10.1073/pnas.1113554108PMC318272921930909Kaminskyy D.; Kryshchshyn A.; Lesyk R. 5-Ene-4-Thiazolidionones-An efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017, 140, 542–594. 10.1016/j.ejmech.2017.09.031.10.1016/j.ejmech.2017.09.031PMC711129828987611Naim M. J.; Alam M. J.; Ahmed S.; Nawaz F.; Shrivastava N.; Sahu M.; Alam O. Therapeutic journey of 2,4-thiazolidinedions as a versatile scaffold: An insight into structure activity relationship. Eur. J. Med. Chem. 2017, 129, 218–250. 10.1016/j.ejmech.2017.02.031.10.1016/j.ejmech.2017.02.03128231521Munwar S.; Lango K. Thiazolidinediones (TZD) as a versatile scaffold in medicinal chemistry biological importance: A Review. Int. J. Pharm. Sci. Rev. 2020, 63, 58–70.Schweipert M.; Jänsch N.; Upadhyay N.; Tilekar K.; Wozny E.; Basheer S.; Wurster E.; Müller M.; CS R.; Meyer-Almes F. J. Mechanistic Insights into Binding of Ligands with Thiazolidinedione Warhead to Human Histone Deacetylase 4. Pharmaceuticals 2021, 14, 103210.3390/ph14101032.10.3390/ph14101032PMC853771134681256Mueller S. L.; Chrysanthopoulos P. K.; Halili M. A.; Hepburn C.; Nebl T.; Supuran C. T.; Nocentini A.; Peat T. S.; Poulsen S. A. The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors: A Spin-Off Discovery from Fragment Screening. Molecules 2021, 26, 301010.3390/molecules26103010.10.3390/molecules26103010PMC815870334070212Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. 10.1016/0022-1759(83)90303-4.10.1016/0022-1759(83)90303-46606682Lotfy G.; Abdel Aziz Y. M.; Aziz Y. M. A.; Said M. M.; El Ashry E. S. H.; El Tamany E. S. H.; Abu-Serie M. M.; Abu-Serie M. M.; Teleb M.; Teleb M.; Dömling A.; Dömling A.; Barakat A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg. Chem. 2021, 117, 10542710.1016/j.bioorg.2021.105427.10.1016/j.bioorg.2021.10542734794098Aziz Y. M. A.; Lotfy G.; Said M. M.; El Ashry E. S. H.; El Tamany E. S. H.; Soliman S.; Abu-Serie M. M.; Teleb M.; Yousuf S.; Dömling A. Design, synthesis, chemical and biochemical insights on to novel hybrid spirooxindoles-based p53-MDM2 inhibitors with potential Bcl2 signaling attenuation. Front. Chem. 2021, 9, 73523610.3389/fchem.2021.735236.10.3389/fchem.2021.735236PMC871345534970530Chadla N.; Bahia M. S.; Kaur M.; Silakari O. Thiazolidin-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg. Med. Chem. 2015, 23, 2953–2974. 10.1016/j.bmc.2015.03.071.10.1016/j.bmc.2015.03.07125890697Lo Fiego M. J.; Lorenzetti A. S.; Silbestri G. F.; Domini C. E. The use of ultrasound in the South Cone region. Advances in organic and inorganic synthesis and in analytical methods. Ultrason. Sonochem. 2021, 80, 10583410.1016/j.ultsonch.2021.105834.10.1016/j.ultsonch.2021.105834PMC860865834814046Thari F. Z.; Tachallait H.; El Alaoui N-E.; Talha A.; Arshad S.; Álvarez E.; Karrouchi K.; Bougrin K. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrason. Sonochem. 2020, 68, 10522210.1016/j.ultsonch.2020.105222.10.1016/j.ultsonch.2020.10522232585575Sharma A.; Priya A.; Kaur M.; Singh A.; Kaur G.; Banerjee B. Ultrasound-assisted synthesis of bioactive S-heterocycles. Synth. Commun. 2021, 51, 3209–3236. 10.1080/00397911.2021.1970775.10.1080/00397911.2021.1970775Marc G.; Ionut I.; Pirnau A.; Vlase L.; Vodnar D. C.; Duma M.; Tiperciuc B.; Oniga O. Microwave assisted synthesis of 3,5-disubstituted thiazolidine-2,4-diones with antifungal activity. Design, synthesis, virtual and in vitro antifungal screening. Farmacia 2017, 65, 414–422.Marc G.; Stana A.; Pirnau A.; Vlase L.; Vodnar D. C.; Duma M.; Tiperciuc B.; Oniga O. 3,5-Disubstituted thiazolidine-2,4-diones: Design, Microwave- Assisted synthesis, Antifungal activity and ADMET Screening. SLAS Discovery 2018, 23, 807–814. 10.1177/2472555218759035.10.1177/247255521875903529437525Nawale S. L.; Avinash S. D. Synthesis and evaluation of novel thiazolidinedione derivatives for antibacterial activity. Der Pharma Chem. 2012, 4, 2270–2277.C.C.G. Molecular Operating Environment (MOE), Montreal, Canada, 2014. http://www.chemcomp.com.Sala F. A.; Wright G. S. A.; Antonyuk S. V.; Garratt R. C.; Hasnain S. S. Molecular recognition and maturation of SOD1 by its evolutionarily destabilized cognate chaperone hCCS. PLoS Biol. 2019, 17, e300014110.1371/journal.pbio.3000141.10.1371/journal.pbio.3000141PMC638393830735496Daina A.; Michielin O.; Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 4271710.1038/srep42717.10.1038/srep42717PMC533560028256516Lipinski C. A.; Lombardo F.; Dominy B. W.; Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23, 3–25. 10.1016/S0169-409X(96)00423-1.10.1016/S0169-409X(96)00423-111259830Veber D. F.; Johnson S. R.; Cheng H.-Y.; Smith B. R.; Ward K. W.; Kopple K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. 10.1021/jm020017n.10.1021/jm020017n12036371Muegge I.; Heald S. L.; Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. 10.1021/jm015507e.10.1021/jm015507e11384230Ghose A. K.; Viswanadhan V. N.; Wendoloski J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. 10.1021/cc9800071.10.1021/cc980007110746014Banerjee P.; Eckert A. O.; Schrey A. K.; Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, 257–263. 10.1093/nar/gky318.10.1093/nar/gky318PMC603101129718510Kumar D.; Narwal S.; Sandhu J. S. Catalyst-free synthesis of highly biologically active 5-arylidene rhodanine and 2,4-thiazolidinedione derivatives using aldonitrones in polyethylene glycol. Int. J. Med. Chem. 2013, 2013, 27353410.1155/2013/273534.10.1155/2013/273534PMC420741725374689Da Silva I. M.; Filho J. S.; Santigo P. B. G. S.; Do Egito M. S.; De Souza C. A.; Gouveia F. L.; Ximenes R. M.; Gouveia K. X. F. L.; De Sena K. X. F. R.; De Faria A. R.; Brondani D. J.; De Albuquerque J. F. C. Synthesis and antimicrobial activities of 5-arylidene-thiazolidine-2,4-dione derivatives. BioMed Res. Int. 2014, 2014, 31608210.1155/2014/316082.10.1155/2014/316082PMC403354524895565Thirupathi G.; Venkatanarayana M.; Dubey P. K.; Kumari Y. B. Facile and green syntheses of substituted-5-arylidene-2,4-thiazolidinediones. Der Pharma Chem. 2012, 4, 2009–2013.Bhat B. A.; Ponnala S.; Sahu D. P.; Tiwari P.; Tripathi B. K.; Srivastava A. K. Synthesis and antihyperglycemic activity profiles of novel thiazolidinedione derivatives. Bioorg. Med. Chem. 2004, 12, 5857–5864. 10.1016/j.bmc.2004.08.031.10.1016/j.bmc.2004.08.03115498661Graham C. E.; Brocklehurst K.; Pickergill R. W.; Warren M. J. Characterization of retinaldehyde dehydrogenase 3. Biochem. J. 2006, 394, 67–75. 10.1042/BJ20050918.10.1042/BJ20050918PMC138600416241904Rotruck J. T.; Pope A. L.; Ganther H. E.; Swanson A. B.; Hafeman D. G.; Hoekstra W. G. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. 10.1126/science.179.4073.588.10.1126/science.179.4073.5884686466Marklund S.; Marklund G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. 10.1111/j.1432-1033.1974.tb03714.x.10.1111/j.1432-1033.1974.tb03714.x4215654
354586182022042620220716
1420-30492782022Apr08Molecules (Basel, Switzerland)MoleculesEnhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo[4,3-a]pyrimidinone Acyclo C-Nucleosides Multitarget Agents.242210.3390/molecules27082422The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8; IC50 = 5.89 nM, 9; IC50 = 10.52 nM) and MMP-2 (8; IC50 = 17.44 nM, 9; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8; IC50 = 0.21 µM, 9; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50, thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation.Abd Al MoatyMohamed NabilMN0000-0003-2843-9704Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.El AshryEl Sayed HelmyESHChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.AwadLaila FathyLFChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.IbrahimNihal AhmedNAChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.Abu-SerieMarwa MuhammadMMMedical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt.BarakatAssemA0000-0002-7885-3201Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.AltowyanMezna SalehMS0000-0002-7038-8018Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.TelebMohamedMDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.engPNURSP2022R86Princess Nourah bint Abdulrahman UniversityJournal Article20220408
SwitzerlandMolecules1009640091420-30490Antineoplastic Agents0Metalloproteins0Nucleosides0Protein Kinase Inhibitors0Pyrimidinones0TriazolesEC 2.7.10.1Vascular Endothelial Growth Factor Receptor-2EC 3.4.24.24Matrix Metalloproteinase 2IMAntineoplastic AgentschemistrypharmacologyCell Line, TumorCell ProliferationDrug Screening Assays, AntitumorHumansMatrix Metalloproteinase 2metabolismMetalloproteinsmetabolismMolecular Docking SimulationMolecular StructureNucleosideschemistrypharmacologyProtein Kinase InhibitorspharmacologyPyrimidinonespharmacologyStructure-Activity RelationshipTriazolespharmacologyVascular Endothelial Growth Factor Receptor-2antagonists & inhibitors1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosidesCAIIMMP-2VEGFR-2multitarget anticancer agentsThe authors declare no conflict of interest.
202221020223182022412022423115202242460202242760202248epublish35458618PMC902610910.3390/molecules27082422molecules27082422Arneth B. Tumor microenvironment. Medicina. 2020;56:15. doi: 10.3390/medicina56010015.10.3390/medicina56010015PMC702339231906017Adhikari N., Mukherjee A., Saha A., Jha T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem. 2017;129:72–109. doi: 10.1016/j.ejmech.2017.02.014.10.1016/j.ejmech.2017.02.01428219048Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003;92:827–839. doi: 10.1161/01.RES.0000070112.80711.3D.10.1161/01.RES.0000070112.80711.3D12730128Cathcart J., Pulkoski-Gross A., Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2015;2:26–34. doi: 10.1016/j.gendis.2014.12.002.10.1016/j.gendis.2014.12.002PMC447414026097889Forget M.A., Desrosiers R.R., Béliveau R. Physiological roles of matrix metalloproteinases: Implications for tumor growth and metastasis. Can. J. Physiol. Pharmacol. 1999;77:465–480. doi: 10.1139/y99-055.10.1139/y99-05510535707Bhowmick N.A., Neilson E.G., Moses H.L. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–337. doi: 10.1038/nature03096.10.1038/nature03096PMC305073515549095Chambers A.F., Matrisian L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 1997;89:1260–1270. doi: 10.1093/jnci/89.17.1260.10.1093/jnci/89.17.12609293916Das N., Benko C., Gill S.E., Dufour A. The pharmacological TAILS of matrix metalloproteinases and their inhibitors. Pharmaceuticals. 2021;14:31. doi: 10.3390/ph14010031.10.3390/ph14010031PMC782375833396445Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020;194:112260. doi: 10.1016/j.ejmech.2020.112260.10.1016/j.ejmech.2020.11226032224379Ayoup M.S., Fouad M.A., Abdel-Hamid H., Abu-Serie M.M., Noby A., Teleb M. Battle tactics against MMP-9; discovery of novel non-hydroxamate MMP-9 inhibitors endowed with PI3K/AKT signaling attenuation and caspase 3/7 activation via Ugi bis-amide synthesis. Eur. J. Med. Chem. 2020;186:111875. doi: 10.1016/j.ejmech.2019.111875.10.1016/j.ejmech.2019.11187531740054Fields G.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells. 2019;8:984. doi: 10.3390/cells8090984.10.3390/cells8090984PMC676947731461880Zhong Y., Lu Y.-T., Sun Y., Shi Z.-H., Li N.-G., Tang Y.-P., Duan J.-A. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin. Drug Discov. 2018;13:75–87. doi: 10.1080/17460441.2018.1398732.10.1080/17460441.2018.139873229088927Nagase H., Woessner J.F. Matrix metalloproteinases. J. Biol. Chem. 1999;274:21491–21494. doi: 10.1074/jbc.274.31.21491.10.1074/jbc.274.31.2149110419448Prudova A., auf dem Keller U., Butler G.S., Overall C.M. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteom. 2010;9:894–911. doi: 10.1074/mcp.M000050-MCP201.10.1074/mcp.M000050-MCP201PMC287142220305284Cauwe B., Van den Steen P.E., Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 2007;42:113–185. doi: 10.1080/10409230701340019.10.1080/1040923070134001917562450Egeblad M., Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002;2:161–174. doi: 10.1038/nrc745.10.1038/nrc74511990853Hashimoto G., Inoki I., Fujii Y., Aoki T., Ikeda E., Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J. Biol. Chem. 2002;277:36288–36295. doi: 10.1074/jbc.M201674200.10.1074/jbc.M20167420012114504Chetty C., Lakka S.S., Bhoopathi P., Rao J.S. MMP-2 alters VEGF expression via αVβ3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int. J. Cancer. 2010;127:1081–1095. doi: 10.1002/ijc.25134.10.1002/ijc.25134PMC289157620027628Heroult M., Bernard-Pierrot I., Delbe J., Hamma-Kourbali Y., Katsoris P., Barritault D., Papadimitriou E., Plouet J., Courty J. Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene. 2004;23:1745–1753. doi: 10.1038/sj.onc.1206879.10.1038/sj.onc.120687915001987Tauro M., Lynch C.C. Cutting to the chase: How matrix metalloproteinase-2 activity controls breast-cancer-to-bone metastasis. Cancers. 2018;10:185. doi: 10.3390/cancers10060185.10.3390/cancers10060185PMC602526029874869Mboge M.Y., Mahon B.P., McKenna R., Frost S.C. Carbonic anhydrases: Role in pH control and cancer. Metabolites. 2018;8:19. doi: 10.3390/metabo8010019.10.3390/metabo8010019PMC587600829495652Aggarwal M., Boone C.D., Kondeti B., McKenna R. Structural annotation of human carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2013;28:267–277. doi: 10.3109/14756366.2012.737323.10.3109/14756366.2012.73732323137351Annan D.A., Maishi N., Soga T., Dawood R., Li C., Kikuchi H., Hojo T., Morimoto M., Kitamura T., Alam M.T., et al. Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell survival under lactic acidosis in the tumor microenvironment. Cell Commun. Signal. 2019;17:169. doi: 10.1186/s12964-019-0478-4.10.1186/s12964-019-0478-4PMC691865531847904Lenci E., Angeli A., Calugi L., Innocenti R., Carta F., Supuran C.T., Trabocchi A. Multitargeting application of proline-derived peptidomimetics addressing cancer-related human matrix metalloproteinase 9 and carbonic anhydrase II. Eur. J. Med. Chem. 2021;214:113260. doi: 10.1016/j.ejmech.2021.113260.10.1016/j.ejmech.2021.11326033581552Zhang H., Zhuo C., Zhou D., Zhang F., Chen M., Xu S., Chen Z. Association between the expression of carbonic anhydrase II and clinicopathological features of hepatocellular carcinoma. Oncol. Lett. 2019;17:5721–5728. doi: 10.3892/ol.2019.10242.10.3892/ol.2019.10242PMC650741331186798Parkkila S., Lasota J., Fletcher J.A., Ou W.B., Kivelä A.J., Nuorva K., Parkkila A.K., Ollikainen J., Sly W.S., Waheed A., et al. Carbonic anhydrase II. A novel biomarker for gastrointestinal stromal tumors. Mod. Pathol. 2010;23:743–750. doi: 10.1038/modpathol.2009.189.10.1038/modpathol.2009.189PMC290058220081808Mallory J.C., Crudden G., Oliva A., Saunders C., Stromberg A., Craven R.J. A novel group of genes regulates susceptibility to antineoplastic drugs in highly tumorigenic breast cancer cells. Mol. Pharmacol. 2005;68:1747–1756. doi: 10.1124/mol.105.016519.10.1124/mol.105.01651916150928Bekku S., Mochizuki H., Yamamoto T., Ueno H., Takayama E., Tadakuma T. Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer. Hepato-Gastroenterology. 2000;47:998–1001.11020863Parkkila S., Rajaniemi H., Parkkila A.K., Kivelä J., Waheed A., Pastoreková S., Pastorek J., Sly W.S. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:2220–2224. doi: 10.1073/pnas.040554897.10.1073/pnas.040554897PMC1578110688890Parkkila A.K., Herva R., Parkkila S., Rajaniemi H. Immunohistochemical demonstration of human carbonic anhydrase isoenzyme II in brain tumours. Histochem. J. 1995;27:974–982. doi: 10.1007/BF02389687.10.1007/BF023896878789398Parkkila S., Parkkila A.K., Juvonen T., Lehto V.P., Rajaniemi H. Immunohistochemical demonstration of the carbonic anhydrase isoenzymes I and II in pancreatic tumours. Histochem. J. 1995;27:133–138. doi: 10.1007/BF00243908.10.1007/BF002439087775197Zhao D., Pan C., Sun J., Gilbert C., Drews-Elger K., Azzam D.J., Picon-Ruiz M., Kim M., Ullmer W., El-Ashry D., et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 2015;34:3107–3119. doi: 10.1038/onc.2014.257.10.1038/onc.2014.25725151964Jain R.K., Tong R.T., Munn L.L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res. 2007;67:2729–2735. doi: 10.1158/0008-5472.CAN-06-4102.10.1158/0008-5472.CAN-06-4102PMC302234117363594Fabian K.L., Storkus W.J. Immunotherapeutic targeting of tumor-associated blood vessels. Tumor Immune Microenviron. Cancer Progress. Cancer Ther. 2017:191–211. doi: 10.1007/978-3-319-67577-0_13.10.1007/978-3-319-67577-0_1329275473Stanković T., Dinić J., Podolski-Renić A., Musso L., Burić S.S., Dallavalle S., Pešić M. Dual inhibitors as a new challenge for cancer multidrug resistance treatment. Curr. Med. Chem. 2019;26:6074–6106. doi: 10.2174/0929867325666180607094856.10.2174/092986732566618060709485629874992Mokhtari R.B., Homayouni T.S., Baluch N., Morgatskaya E., Kumar S., Das B., Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022. doi: 10.18632/oncotarget.16723.10.18632/oncotarget.16723PMC551496928410237Anighoro A., Bajorath J., Rastelli G. Polypharmacology: Challenges and opportunities in drug discovery: Miniperspective. J. Med. Chem. 2014;57:7874–7887. doi: 10.1021/jm5006463.10.1021/jm500646324946140Blagosklonny M.V. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol. Sci. 2005;26:77–81. doi: 10.1016/j.tips.2004.12.002.10.1016/j.tips.2004.12.00215681024Bianchini F., Calugi C., Ruzzolini J., Menchi G., Calorini L., Guarna A., Trabocchi A. A study of ad-proline peptidomimetic inhibitor of melanoma and endothelial cell invasion through activity towards MMP-2 and MMP-9. MedChemComm. 2015;6:277–282. doi: 10.1039/C4MD00287C.10.1039/C4MD00287CTauro M., Loiodice F., Ceruso M., Supuran C.T., Tortorella P. Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Bioorg. Med. Chem. Lett. 2014;24:2617–2620. doi: 10.1016/j.bmcl.2014.04.077.10.1016/j.bmcl.2014.04.07724813742Reich R., Hoffman A., Veerendhar A., Maresca A., Innocenti A., Supuran C.T., Breuer E. Carbamoylphosphonates control tumor cell proliferation and dissemination by simultaneously inhibiting carbonic anhydrase IX and matrix metalloproteinase-2. Toward nontoxic chemotherapy targeting tumor microenvironment. J. Med. Chem. 2012;55:7875–7882. doi: 10.1021/jm300981b.10.1021/jm300981b22894736Esteves M.A., Ortet O., Capelo A., Supuran C.T., Marques S.M., Santos M.A. New hydroxypyrimidinone-containing sulfonamides as carbonic anhydrase inhibitors also acting as MMP inhibitors. Bioorg. Med. Chem. Lett. 2010;20:3623–3627. doi: 10.1016/j.bmcl.2010.04.109.10.1016/j.bmcl.2010.04.10920478708Scozzafava A., Supuran C.T. Carbonic anhydrase and matrix metalloproteinase inhibitors: Sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes. J. Med. Chem. 2000;43:3677–3687. doi: 10.1021/jm000027t.10.1021/jm000027t11020282Haag T., Hughes R.A., Ritter G., Schmidt R.R. Carbohydrate-Based VEGF Inhibitors. Eur. J. Org. Chem. 2007:6016–6033. doi: 10.1002/ejoc.200700698.10.1002/ejoc.200700698Cuffaro D., Nuti E., Rossello A. An overview of carbohydrate-based carbonic anhydrase inhibitors. J. Enzym. Inhib. Med. Chem. 2020;35:1906–1922. doi: 10.1080/14756366.2020.1825409.10.1080/14756366.2020.1825409PMC771771333078634Cuffaro D., Nuti E., D’Andrea F., Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals. 2020;13:376. doi: 10.3390/ph13110376.10.3390/ph13110376PMC769682933182755Said M.A., Eldehna W.M., Nocentini A., Bonardi A., Fahim S.H., Bua S., Soliman D.H., Abdel-Aziz H.A., Gratteri P., Abou-Seri S.M., et al. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2020;185:111843. doi: 10.1016/j.ejmech.2019.111843.10.1016/j.ejmech.2019.11184331718943Mangani S., Liljas A. Crystal structure of the complex between human carbonic anhydrase II and the aromatic inhibitor 1,2,4-triazole. J. Mol. Biol. 1993;232:9–14. doi: 10.1006/jmbi.1993.1365.10.1006/jmbi.1993.13658331673Nara H., Sato K., Naito T., Mototani H., Oki H., Yamamoto Y., Kuno H., Santou T., Kanzaki N., Terauchi J., et al. Thieno [2,3-d] pyrimidine-2-carboxamides bearing a carboxybenzene group at 5-position: Highly potent, selective, and orally available MMP-13 inhibitors interacting with the S1″ binding site. Bioorg. Med. Chem. 2014;22:5487–5505. doi: 10.1016/j.bmc.2014.07.025.10.1016/j.bmc.2014.07.02525192810El Ashry E.S.H., Awad L.F., Teleb M., Ibrahim N.A., Abu-Serie M.M., Abd Al Moaty M.N. Structure-based design and optimization of pyrimidine-and 1, 2, 4-triazolo [4, 3-a] pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorg. Chem. 2020;96:103616. doi: 10.1016/j.bioorg.2020.103616.10.1016/j.bioorg.2020.10361632032847El Ashry E.S.H., Awad L.F., Badawy M.E.I., Rabea E.I., Ibrahim N.A., Abd Al Moaty M.N. Synthesis, antibacterial, antioxidant, and molecular docking studies of 6-methylpyrimidin-4( 3H )-one and oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives. J. Mol. Struct. 2022;1249:131551. doi: 10.1016/j.molstruc.2021.131551.10.1016/j.molstruc.2021.131551Fletcher G.C., Brokx R.D., Denny T.A., Hembrough T.A., Plum S.M., Fogler W.E., Sidor C.F., Bray M.R. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol. Cancer Ther. 2011;10:126–137. doi: 10.1158/1535-7163.MCT-10-0574.10.1158/1535-7163.MCT-10-057421177375Xiao X.-Y., Patel D.V., Ward J.S., Bray M.R., Agoston G.E., Treston A.M. Therapeutics Inc. (Rockville, MD, USA), Substituted Pyrazole Compounds. US 7,563,787B2. U.S. Patent. 2006 September 29;Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660.10.3322/caac.2166033538338Murnane M.J., Cai J., Shuja S., McAneny D., Klepeis V., Willett J.B. Active MMP-2 effectively identifies the presence of colorectal cancer. Int. J. Cancer. 2009;125:2893–2902. doi: 10.1002/ijc.24682.10.1002/ijc.24682PMC277504819551856Kim D., Rhee S. Matrix metalloproteinase-2 regulates MDA-MB-231 breast cancer cell invasion induced by active mammalian diaphanous-related formin 1. Mol. Med. Rep. 2016;14:277–282. doi: 10.3892/mmr.2016.5282.10.3892/mmr.2016.528227177153Liu J., Li X., Huang J., Liu Y. Matrix metalloproteinase 2 knockdown suppresses the proliferation of HepG2 and Huh7 cells and enhances the cisplatin effect. Open Med. 2019;14:384–391. doi: 10.1515/med-2019-0039.10.1515/med-2019-0039PMC653410331157304Waterman E.A., Cross N.A., Lippitt J.M., Cross S.S., Rehman I., Holen I., Hamdy F.C., Eaton C.L. The antibody MAB8051 directed against osteoprotegerin detects carbonic anhydrase II: Implications for association studies with human cancers. Int. J. Cancer. 2007;121:1958–1966. doi: 10.1002/ijc.22946.10.1002/ijc.2294617631639Mahfouz N., Tahtouh R., Alaaeddine N., El Hajj J., Sarkis R., Hachem R., Raad I., Hilal G. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS ONE. 2017;12:e0179202. doi: 10.1371/journal.pone.0179202.10.1371/journal.pone.0179202PMC546635928594907Di Benedetto M., Toullec A., Buteau-Lozano H., Abdelkarim M., Vacher S., Velasco G., Christofari M., Pocard M., Bieche I., Perrot-Applanat M. MDA-MB-231 breast cancer cells overexpressing single VEGF isoforms display distinct colonisation characteristics. Br. J. Cancer. 2015;113:773–785. doi: 10.1038/bjc.2015.267.10.1038/bjc.2015.267PMC455983026196186Liu L., Qin S., Zheng Y., Han L., Zhang M., Luo N., Liu Z., Gu N., Gu X., Yin X. Molecular targeting of VEGF/VEGFR signaling by the anti-VEGF monoclonal antibody BD0801 inhibits the growth and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo. Cancer Biol. Ther. 2017;18:166–176. doi: 10.1080/15384047.2017.1282019.10.1080/15384047.2017.1282019PMC538942428368741Wang R.J., Yang C.H., Hu M.L. 1-Deoxynojirimycin inhibits metastasis of B16F10 melanoma cells by attenuating the activity and expression of matrix metalloproteinases-2 and-9 and altering cell surface glycosylation. J. Agric. Food Chem. 2010;58:8988–8993. doi: 10.1021/jf101401b.10.1021/jf101401b23654233Buchieri M.V., Riafrecha L.E., Rodríguez O.M., Vullo D., Morbidoni H.R., Supuran C.T., Colinas P.A. Inhibition of the β-carbonic anhydrases from Mycobacterium tuberculosis with C-cinnamoyl glycosides: Identification of the first inhibitor with anti-mycobacterial activity. Bioorg. Med. Chem. Lett. 2013;23:740–743. doi: 10.1016/j.bmcl.2012.11.085.10.1016/j.bmcl.2012.11.08523265903Shaban M.E., Taha M.M., Nasr A.Z., Morgaan A.A. Synthesis of acyclo C-nucleosides:3-(alditol-1-yl)-5-methyl-7-oxo-1,2,4-triazolo[4,3-a]pyrimidines. Pharmazie. 1995;50:784–788.10723764Abdel-Aal M.T., El-Sayed W.A., AH A.A., El Ashry E.S. Synthesis of some functionalized arylaminomethyl-1,2,4-triazoles,1,3,4-oxa-and thiadiazoles. Die Pharm. 2003;58:788–792. doi: 10.1002/chin.200409108.10.1002/chin.20040910814664332El Ashry E.S.H., Abdul-Ghani M.M. Reaction of Sugars with 2-Hydrazinopyridine, Precursors for Seco C-Nucleosides of 1, 2, 4-Triazolo [4, 3-a] pyridine. Nucleosides Nucleotides Nucleic Acids. 2004;23:567–580. doi: 10.1081/NCN-120030715.10.1081/NCN-12003071515113024Kett W.C., Batley M., Redmond J.W. Heterocyclic derivatives of sugars: An NMR study of the formation of 1-glycosyl-3, 5-dimethyl-1 H-pyrazoles from hydrazones. Carbohydr. Res. 1997;299:129–141. doi: 10.1016/S0008-6215(97)00007-4.10.1016/S0008-6215(97)00007-411086696Saeed M.S., Williams J.M. Model studies pertaining to the hydrazinolysis of glycopeptides and glycoproteins: Hydrazinolysis of the 1-N-acetyl and 1-N-(l-β-aspartyl) derivatives of 2-acetamido-2-deoxy-β-d-glucopyranosylamine. Carbohydr. Res. 1980;84:83–94. doi: 10.1016/S0008-6215(00)85432-4.10.1016/S0008-6215(00)85432-4El Sayed H., Awad L.F., Ghani M.A., Atta A.I. Reaction of monosaccharides with 2-pyridylcarboxamidrazone and determination of the nature of products. Arkivoc. 2005;15:97–104.Petráková E., Kováč P. Synthesis of new methyl O-acetyl-α-and-β-d-xylopyranosides. Carbohydr. Res. 1982;101:141–147. doi: 10.1016/S0008-6215(00)80804-6.10.1016/S0008-6215(00)80804-6El Ashry E.S.H., Awad L.F., Nasr M., Kassem A.A., Zakaria M.A. Novel Synthesis of N-(1, 3-Dioxoisoindol-2-yl) aminothiocarbohydrazide, and its Arylidenes and Glycosylidines as Precursors for Hybrids with Thiadiazoline Ring. Equilibration of the Glycosylidine Open Chain with the Cyclic Structures and Conformation of the Acyclic Analogues. Curr. Org. Synth. 2018;15:1005–1013.Alho M.A.M., D’Accorso N.B. Behavior of free sugar thiosemicarbazones toward heterocyclization reactions. Carbohydr. Res. 2000;328:481–488. doi: 10.1016/S0008-6215(00)00127-0.10.1016/S0008-6215(00)00127-011093704Bundle D.R., Lemieux R.U. Determination of Anomeric configuration by NMR. Methods Carbohydr. Chem. 1976;7:79–86.Choudhury A.K., Roy N. Synthesis of some galactofuranosyl disaccharides using a galactofuranosyl trichloroacetimidate as donor. Carbohydr. Res. 1998;308:207–211. doi: 10.1016/S0008-6215(98)00062-7.10.1016/S0008-6215(98)00062-7El Sayed H., Awad L.F., Winkler M. A new approach to the synthesis of nucleosides of 1,2,4-triazole. J. Chem. Soc. Perkin Trans. 1. 2000;5:829–834. doi: 10.1039/A904200H.10.1039/A904200HReiter J., Bongo L., Dyortsok P. Structure elucidation of isomeric 1,2,4-triazolopyrimidinones. Tetrahedron. 1987;43:2497–2504. doi: 10.1016/S0040-4020(01)81656-2.10.1016/S0040-4020(01)81656-2Mohamed M.A., Abu-Alola L.M., Al-Zaidi O.N., Saad H.A. Cyclocondensation reactions of hydrazonoyl chlorides with some azines: Synthesis of new fused heterocycles of expected microbiological activity. Int. J. Org. Chem. 2016;7:12–24. doi: 10.4236/ijoc.2017.71002.10.4236/ijoc.2017.71002Chernyshev V.M., Astakhov A.V., Starikova Z.A. Reaction of 1-substituted 3, 5-diamino-1, 2, 4-triazoles with β-keto esters: Synthesis and new rearrangement of mesoionic 3-amino-2H [1,2,4] triazolo-[4,3-a] pyrimidin-5-ones. Tetrahedron. 2010;66:3301–3313. doi: 10.1016/j.tet.2010.03.009.10.1016/j.tet.2010.03.009Rizk S.A., El-Naggar A.M., El-Badawy A.A. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents. J. Mol. Struct. 2018;1155:720–733. doi: 10.1016/j.molstruc.2017.11.066.10.1016/j.molstruc.2017.11.066Awad L.F., El Sayed H. Synthesis and conformational analysis of seco C-nucleosides and their diseco double-headed analogues of the 1,2,4-triazole, 1,2,4-triazolo[3,4-b]1,3,4-thiadiazole. Carbohydr. Res. 1998;312:9–22. doi: 10.1016/S0008-6215(98)00205-5.10.1016/S0008-6215(98)00205-5Rizk O.H., Teleb M., Abu-Serie M.M., Shaaban O.G. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation. Bioorg. Chem. 2019;92:103189. doi: 10.1016/j.bioorg.2019.103189.10.1016/j.bioorg.2019.10318931473473Ayoup M.S., Wahby Y., Abdel-Hamid H., Teleb M., Abu-Serie M.M., Noby A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur. J. Med. Chem. 2019;168:340–356. doi: 10.1016/j.ejmech.2019.02.051.10.1016/j.ejmech.2019.02.05130826510Zhang P.L., Liu L., Li X. MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate VEGFA. Biomed. Pharmacother. 2020;123:109751. doi: 10.1016/j.biopha.2019.109751.10.1016/j.biopha.2019.10975131958751Lee H., Son J., Na C.-B., Yi G., Koo H., Park J.-P. The effects of doxorubicin-loaded liposomes on viability, stem cell surface marker expression and secretion of vascular endothelial growth factor of three-dimensional stem cell spheroids. Exp. Ther. Med. 2018;15:4950–4960. doi: 10.3892/etm.2018.6064.10.3892/etm.2018.6064PMC595866929805519Duyndam M.C.A., van Berkel M.P.A., Dorsman J.C., Rockx D.A.P., Pinedo H.M., Boven E. Cisplatin and Doxorubicin Repress Vascular Endothelial Growth Factor Expression and Differentially Down-Regulate Hypoxia-Inducible Factor I Activity in Human Ovarian Cancer Cells. Biochem. Pharmacol. 2007;74:191–201. doi: 10.1016/j.bcp.2007.04.003.10.1016/j.bcp.2007.04.00317498666Ayoup M.S., Abu-Serie M.M., Abdel-Hamid H., Teleb M. Beyond direct Nrf2 activation; reinvestigating 1,2,4-oxadiazole scaffold as a master key unlocking the antioxidant cellular machinery for cancer therapy. Eur. J. Med. Chem. 2021;220:113475. doi: 10.1016/j.ejmech.2021.113475.10.1016/j.ejmech.2021.11347533901898Ayoup M.S., Abu-Serie M.M., Awad L.F., Teleb M., Ragab H.M., Amer A. Halting colorectal cancer metastasis via novel dual nanomolar MMP-9/MAO-A quinoxaline-based inhibitors; Design, synthesis, and evaluation. Eur. J. Med. Chem. 2021;222:113558. doi: 10.1016/j.ejmech.2021.113558.10.1016/j.ejmech.2021.11355834116327Keserü G.M., Makara G.M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 2009;8:203–212. doi: 10.1038/nrd2796.10.1038/nrd279619247303Chen H., Engkvist O., Kogej T. The Practice of Medicinal Chemistry. Academic Press; Cambridge, MA, USA: 2015. Compound properties and their influence on drug quality; pp. 379–393.Arnott J.A., Kumar R., Planey S.L. Lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet. 2013;1:31–36.Albelwi F.F., Teleb M., Abu-Serie M.M., Abd Al Moaty M.N., Alsubaie M.S., Zakaria M.A., El Kilany Y., Aouad M.R., Hagar M., Rezki N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. Int. J. Mol. Sci. 2021;22:10324. doi: 10.3390/ijms221910324.10.3390/ijms221910324PMC850876834638665Beyza Öztürk Sarıkaya S., Gülçin İ., Supuran C.T. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem. Biol. Drug Des. 2010;75:515–520. doi: 10.1111/j.1747-0285.2010.00965.x.10.1111/j.1747-0285.2010.00965.x20486938Khodarahmi R., Khateri S., Adibi H., Nasirian V., Hedayati M., Faramarzi E., Soleimani S., Goicoechea H.C., Jalalvand A.R. Chemometrical-electrochemical investigation for comparing inhibitory effects of quercetin and its sulfonamide derivative on human carbonic anhydrase II: Theoretical and experimental evidence. Int. J. Biol. Macromol. 2019;136:377–385. doi: 10.1016/j.ijbiomac.2019.06.093.10.1016/j.ijbiomac.2019.06.09331207328Molecular Operating Environment (MOE), Chemical Computing Group, Montreal, Canada. [(accessed on 23 August 2021)]. Available online: https://www.chemcomp.com.McTigue M., Murray B.W., Chen J.H., Deng Y.L., Solowiej J., Kania R.S. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. USA. 2012;109:18281–18289. doi: 10.1073/pnas.1207759109.10.1073/pnas.1207759109PMC349493122988103Traxler P., Furet P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther. 1999;82:195–206. doi: 10.1016/S0163-7258(98)00044-8.10.1016/S0163-7258(98)00044-810454197Kroe R.R., Regan J., Proto A., Peet G.W., Roy T., Landro L.D., Fuschetto N.G., Pargellis C.A., Ingraham R.H. Thermal denaturation: A method to rank slow binding, high-affinity P38alpha MAP kinase inhibitors. J. Med. Chem. 2003;46:4669–4675. doi: 10.1021/jm030120s.10.1021/jm030120s14561086Dietrich J., Hulme C., Hurley L.H. The design, synthesis, and evaluation of 8 hybrid DFG-out allosteric kinase inhibitors: A structural analysis of the binding interactions of Gleevec, Nexavar, and BIRB-796. Bioorg. Med. Chem. 2010;18:5738–5748. doi: 10.1016/j.bmc.2010.05.063.10.1016/j.bmc.2010.05.06320621496Shahin M.I., Abou El Ella D.A., Ismail N.S., Abouzid K.A. Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold. Bioorg. Chem. 2014;56:16–26. doi: 10.1016/j.bioorg.2014.05.010.10.1016/j.bioorg.2014.05.01024922538Abdullaziz M.A., Abdel-Mohsen H.T., El Kerdawy A.M., Ragab F.A., Ali M.M., Abu-Bakr S.M., Girgis A.S., El Diwani H.I. Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors. Eur. J. Med. Chem. 2017;136:315–329. doi: 10.1016/j.ejmech.2017.04.068.10.1016/j.ejmech.2017.04.06828505536Feng Y., Likos J.J., Zhu L., Woodward H., Munie G., McDonald J.J., Stevens A.M., Howard C.P., De Crescenzo G.A., Welsch D., et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2002;1598:10–23. doi: 10.1016/S0167-4838(02)00307-2.10.1016/S0167-4838(02)00307-212147339Boriack-Sjodin P.A., Zeitlin S., Christianson D.W., Chen H.H., Crenshaw L., Gross S., Dantanarayana A., Delgado P., May J.A., Dean T. Structural analysis of inhibitor binding to human carbonic anhydrase II. Protein Sci. 1998;7:2483–2489. doi: 10.1002/pro.5560071201.10.1002/pro.5560071201PMC21438949865942Esposito E.X., Baran K., Kelly K., Madura J.D. Docking of sulfonamides to carbonic anhydrase II and IV. J. Mol. Graph. Model. 2000;18:283–289. doi: 10.1016/S1093-3263(00)00040-1.10.1016/S1093-3263(00)00040-111021544El Hawary S.S., Khattab A.R., Marzouk H.S., El Senousy A.S., Alex M.G., Aly O.M., Teleb M., Abdelmohsen U.R. In silico identification of SARS-CoV-2 spike (S) protein–ACE2 complex inhibitors from eight Tecoma species and cultivars analyzed by LC-MS. RSC Adv. 2020;10:43103–43108.PMC905814335514923Abdelmoneem M.A., Abd Elwakil M.M., Khattab S.N., Helmy M.W., Bekhit A.A., Abdulkader M.A., Zaky A., Teleb M., Elkhodairy K.A., Albericio F., et al. Lactoferrin-dual drug nanoconjugate: Synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. Mater. Sci. Eng. C. 2021;118:111422. doi: 10.1016/j.msec.2020.111422.10.1016/j.msec.2020.11142233255023Metawea O.R.M., Abdelmoneem M.A., Haiba N.S., Khalil H.H., Teleb M., Elzoghby A.O., Khafaga A.F., Noreldin A.E., Albericio F., Khattab S.N. A novel ‘smart’PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf. B Biointerfaces. 2021;202:111694.33740633VEGFR2 (KDR) Kinase Assay Kit. [(accessed on 20 September 2021)]. Available online: http://bpsbioscience.com/vegfr2-kdr-kinase-assay-kit-40325.MMP2 Inhibitor Screening Assay Kit (Colorimetric) (ab139446) [(accessed on 2 October 2021)]. Available online: https://www.abcam.com/mmp2-inhibitor-screening-assay-kit-colorimetric-ab139446.html.Huang H., Pan X., Ji C., Zeng G., Jiang L., Fu X., Liu J., Hao X., Zhang Y., Tan N. Screening and docking studies of natural phenolic inhibitors of carbonic anhydrase II. Sci. China Ser. B Chem. 2009;52:332–337. doi: 10.1007/s11426-008-0133-1.10.1007/s11426-008-0133-1
346386652021110120211101
1422-006722192021Sep25International journal of molecular sciencesInt J Mol SciHalting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation.1032410.3390/ijms221910324Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2-5.6-fold) and suppressed cyclin D expression (0.8-0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15. Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria.AlbelwiFawzia FalehFFDepartment of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.TelebMohamedMDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.Abu-SerieMarwa MMMMedical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt.MoatyMohamed Nabil Abd AlMNAAChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.AlsubaieMai SMSChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.ZakariaMohamed AMA0000-0001-8785-3046Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.El KilanyYeldezYChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.AouadMohamed RedaMR0000-0001-7018-6654Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.HagarMohamedM0000-0003-0169-7738Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.RezkiNadjetN0000-0001-8330-1738Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.engJournal Article20210925
SwitzerlandInt J Mol Sci1010927911422-00670Antineoplastic Agents0Hydroxamic Acids0Mannich Bases0Matrix Metalloproteinase Inhibitors0TriazolesEC 3.4.24.24Matrix Metalloproteinase 2EC 3.4.24.35Matrix Metalloproteinase 9IMAntineoplastic AgentspharmacologyCaco-2 CellsCell Line, TumorCell Proliferationdrug effectsDrug Screening Assays, AntitumormethodsHumansHydroxamic AcidspharmacologyMannich BasespharmacologyMatrix Metalloproteinase 2metabolismMatrix Metalloproteinase 9metabolismMatrix Metalloproteinase InhibitorspharmacologyMicrowavesMolecular Docking SimulationSignal Transductiondrug effectsStructure-Activity RelationshipTriazolespharmacology1,2,3-triazole1,2,4-triazoleanticancermannich basesmatrix metalloproteinases-2,9The authors declare no conflict of interest.
202182020219172021923202110131220211014602021113602021925epublish34638665PMC850876810.3390/ijms221910324ijms221910324Stetler-Stevenson W.G., Aznavoorian S., Liotta L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. cell Biol. 1993;9:541–573. doi: 10.1146/annurev.cb.09.110193.002545.10.1146/annurev.cb.09.110193.0025458280471Walker C., Mojares E., del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 2018;19:3028. doi: 10.3390/ijms19103028.10.3390/ijms19103028PMC621338330287763Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015.10.1016/j.cell.2010.03.015PMC286205720371345Cathcart J., Pulkoski-Gross A., Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2015;2:26–34. doi: 10.1016/j.gendis.2014.12.002.10.1016/j.gendis.2014.12.002PMC447414026097889Curran S., Dundas S.R., Buxton J., Leeman M.F., Ramsay R., Murray G.I. Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin. Cancer Res. 2004;10:8229–8234. doi: 10.1158/1078-0432.CCR-04-0424.10.1158/1078-0432.CCR-04-042415623598Forget M.-A., Desrosiers R.R., Béliveau R. Physiological roles of matrix metalloproteinases: Implications for tumor growth and metastasis. Can. J. Physiol. Pharmacol. 1999;77:465–480. doi: 10.1139/y99-055.10.1139/y99-05510535707Adhikari N., Mukherjee A., Saha A., Jha T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem. 2017;129:72–109. doi: 10.1016/j.ejmech.2017.02.014.10.1016/j.ejmech.2017.02.01428219048Fisher B., Costantino J., Redmond C., Poisson R., Bowman D., Couture J., Dimitrov N.V., Wolmark N., Wickerham D.L., Fisher E.R. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor–positive tumors. N. Engl. J. Med. 1989;320:479–484. doi: 10.1056/NEJM198902233200802.10.1056/NEJM1989022332008022644532Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie. 2005;87:249–263. doi: 10.1016/j.biochi.2004.11.019.10.1016/j.biochi.2004.11.01915781312Bhowmick N.A., Neilson E.G., Moses H.L. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–337. doi: 10.1038/nature03096.10.1038/nature03096PMC305073515549095Chambers A.F., Matrisian L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 1997;89:1260–1270. doi: 10.1093/jnci/89.17.1260.10.1093/jnci/89.17.12609293916Kalluri R., Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer. 2006;6:392–401. doi: 10.1038/nrc1877.10.1038/nrc187716572188Overall C.M., Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer. 2006;6:227–239. doi: 10.1038/nrc1821.10.1038/nrc182116498445Baidya S.K., Amin S.A., Jha T. Outline of gelatinase inhibitors as anti-cancer agents: A patent mini-review for 2010-present. Eur. J. Med. Chem. 2020;213:113044. doi: 10.1016/j.ejmech.2020.113044.10.1016/j.ejmech.2020.11304433279289Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020;194:112260. doi: 10.1016/j.ejmech.2020.112260.10.1016/j.ejmech.2020.11226032224379Zhong Y., Lu Y.-T., Sun Y., Shi Z.-H., Li N.-G., Tang Y.-P., Duan J.-A. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin. Drug Discov. 2018;13:75–87. doi: 10.1080/17460441.2018.1398732.10.1080/17460441.2018.139873229088927Fischer T., Senn N., Riedl R. Frontispiece: Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chem.–A Eur. J. 2019;25 doi: 10.1002/chem.201805361.10.1002/chem.20180536130720221Rao B.G. Recent developments in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des. 2005;11:295–322. doi: 10.2174/1381612053382115.10.2174/138161205338211515723627Breuer E., Frant J., Reich R. Recent non-hydroxamate matrix metalloproteinase inhibitors. Expert Opin. Ther. Pat. 2005;15:253–269. doi: 10.1517/13543776.15.3.253.10.1517/13543776.15.3.253Danishefsky S.J., Allen J.R. Vom Labor zur Klinik: Vollsynthetische Antitumor-Impfstoffe auf Kohlenhydratbasis. Angew. Chem. 2000;112:882–912. doi: 10.1002/(SICI)1521-3757(20000303)112:5<882::AID-ANGE882>3.0.CO;2-1.10.1002/(SICI)1521-3757(20000303)112:5<882::AID-ANGE882>3.0.CO;2-1Brown S., Meroueh S.O., Fridman R., Mobashery S. Quest for selectivity in inhibition of matrix metalloproteinases. Curr. Top. Med. Chem. 2004;4:1227–1238. doi: 10.2174/1568026043387854.10.2174/156802604338785415320723Boström E.A., Tarkowski A., Bokarewa M. Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2009;1793:1894–1900. doi: 10.1016/j.bbamcr.2009.09.008.10.1016/j.bbamcr.2009.09.00819770005Folgueras A.R., Pendas A.M., Sanchez L.M., Lopez-Otin C. Matrix metalloproteinases in cancer: From new functions to improved inhibition strategies. Int. J. Dev. Biol. 2004;48:411–424. doi: 10.1387/ijdb.041811af.10.1387/ijdb.041811af15349816Dublanchet A.-C., Ducrot P., Andrianjara C., O’Gara M., Morales R., Compère D., Denis A., Blais S., Cluzeau P., Courté K. Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorganic Med. Chem. Lett. 2005;15:3787–3790. doi: 10.1016/j.bmcl.2005.05.079.10.1016/j.bmcl.2005.05.07916002291Johnson A.R., Pavlovsky A.G., Ortwine D.F., Prior F., Man C.-F., Bornemeier D.A., Banotai C.A., Mueller W.T., McConnell P., Yan C. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem. 2007;282:27781–27791. doi: 10.1074/jbc.M703286200.10.1074/jbc.M70328620017623656Li J.J., Nahra J., Johnson A.R., Bunker A., O’Brien P., Yue W.-S., Ortwine D.F., Man C.-F., Baragi V., Kilgore K. Quinazolinones and pyrido [3, 4-d] pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. J. Med. Chem. 2008;51:835–841. doi: 10.1021/jm701274v.10.1021/jm701274v18251495Morales R., Perrier S., Florent J.-M., Beltra J., Dufour S., De Mendez I., Manceau P., Tertre A., Moreau F., Compere D. Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12. J. Mol. Biol. 2004;341:1063–1076. doi: 10.1016/j.jmb.2004.06.039.10.1016/j.jmb.2004.06.03915289103Ayoup M.S., Fouad M.A., Abdel-Hamid H., Abu-Serie M.M., Noby A., Teleb M. Battle tactics against MMP-9; discovery of novel non-hydroxamate MMP-9 inhibitors endowed with PI3K/AKT signaling attenuation and caspase 3/7 activation via Ugi bis-amide synthesis. Eur. J. Med. Chem. 2020;186:111875. doi: 10.1016/j.ejmech.2019.111875.10.1016/j.ejmech.2019.11187531740054Kharb R., Sharma P.C., Yar M.S. Pharmacological significance of triazole scaffold. J. Enzym. Inhib. Med. Chem. 2011;26:1–21. doi: 10.3109/14756360903524304.10.3109/1475636090352430420583859Maddila S., Pagadala R., Jonnalagadda S.B. 1, 2, 4-Triazoles: A review of synthetic approaches and the biological activity. Lett. Org. Chem. 2013;10:693–714. doi: 10.2174/157017861010131126115448.10.2174/157017861010131126115448Dheer D., Singh V., Shankar R. Medicinal attributes of 1, 2, 3-triazoles: Current developments. Bioorganic Chem. 2017;71:30–54. doi: 10.1016/j.bioorg.2017.01.010.10.1016/j.bioorg.2017.01.01028126288Aouad M.R. Efficient eco-friendly solvent-free click synthesis and antimicrobial evaluation of new fluorinated 1, 2, 3-triazoles and their conversion into Schiff Bases. J. Braz. Chem. Soc. 2015;26:2105–2115. doi: 10.5935/0103-5053.20150196.10.5935/0103-5053.20150196Aouad M.R. Synthesis and antimicrobial screening of novel thioglycosides and acyclonucleoside analogs carrying 1, 2, 3-triazole and 1, 3, 4-oxadiazole moieties. Nucleosides Nucleotides Nucleic Acids. 2016;35:1–15. doi: 10.1080/15257770.2015.1109098.10.1080/15257770.2015.110909826810028Rezki N., Mayaba M.M., Al-blewi F.F., Aouad M.R. Click 1, 4-regioselective synthesis, characterization, and antimicrobial screening of novel 1, 2, 3-triazoles tethering fluorinated 1, 2, 4-triazole and lipophilic side chain. Res. Chem. Intermed. 2017;43:995–1011. doi: 10.1007/s11164-016-2679-4.10.1007/s11164-016-2679-4Aouad M.R. Click Synthesis and antimicrobial screening of novel isatin-1, 2, 3-triazoles with piperidine, morpholine, or piperazine moieties. Org. Prep. Proced. Int. 2017;49:216–227. doi: 10.1080/00304948.2017.1320515.10.1080/00304948.2017.1320515Aouad M.R., Mayaba M.M., Naqvi A., Bardaweel S.K., Al-Blewi F.F., Messali M., Rezki N. Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1, 2, 4-triazoles carrying 1, 2, 3-triazole scaffold with lipophilic side chain tether. Chem. Cent. J. 2017;11:1–13. doi: 10.1186/s13065-017-0347-4.10.1186/s13065-017-0347-4PMC569627329159721Rezki N. Green microwave synthesis and antimicrobial evaluation of novel triazoles. Org. Prep. Proced. Int. 2017;49:525–541. doi: 10.1080/00304948.2017.1384262.10.1080/00304948.2017.1384262Rezki Z., Aouad M.R. Green ultrasound-assisted three-component click synthesis of novel 1H-1, 2, 3-triazole carrying benzothiazoles and fluorinated-1, 2, 4-triazole conjugates and their antimicrobial evaluation. Acta Pharm. 2017;67:309–324. doi: 10.1515/acph-2017-0024.10.1515/acph-2017-002428858836Aouad M.R., Soliman M.A., Alharbi M.O., Bardaweel S.K., Sahu P.K., Ali A.A., Messali M., Rezki N., Al-Soud Y.A. Design, synthesis and anticancer screening of novel benzothiazole-piperazine-1, 2, 3-triazole hybrids. Molecules. 2018;23:2788. doi: 10.3390/molecules23112788.10.3390/molecules23112788PMC627866530373247Aouad M.R., Almehmadi M.A., Rezki N., Al-blewi F.F., Messali M., Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1, 2, 3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct. 2019;1188:153–164. doi: 10.1016/j.molstruc.2019.04.005.10.1016/j.molstruc.2019.04.005Al-Blewi F.F., Almehmadi M.A., Aouad M.R., Bardaweel S.K., Sahu P.K., Messali M., Rezki N., El Sayed H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1, 2, 3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J. 2018;12:1–14. doi: 10.1186/s13065-018-0479-1.10.1186/s13065-018-0479-1PMC676802330387018Rezki N., Almehmadi M.A., Ihmaid S., Shehata A.M., Omar A.M., Ahmed H.E., Aouad M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1, 2, 3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorganic Chem. 2020;103:104133. doi: 10.1016/j.bioorg.2020.104133.10.1016/j.bioorg.2020.10413332745759Almehmadi M.A., Aljuhani A., Alraqa S.Y., Ali I., Rezki N., Aouad M.R., Hagar M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1, 2, 3-triazole conjugates. J. Mol. Struct. 2021;1225:129148. doi: 10.1016/j.molstruc.2020.129148.10.1016/j.molstruc.2020.129148Alraqa S.Y., Alharbi K., Aljuhani A., Rezki N., Aouad M.R., Ali I. Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1, 2, 3-triazole molecular hybrids with different pharmacophores. J. Mol. Struct. 2021;1225:129192. doi: 10.1016/j.molstruc.2020.129192.10.1016/j.molstruc.2020.129192Ihmaid S.K., Alraqa S.Y., Aouad M.R., Aljuhani A., Elbadawy H.M., Salama S.A., Rezki N., Ahmed H.E. Design of molecular hybrids of phthalimide-triazole agents with potent selective MCF-7/HepG2 cytotoxicity: Synthesis, EGFR inhibitory effect, and metabolic stability. Bioorganic Chem. 2021;111:104835. doi: 10.1016/j.bioorg.2021.104835.10.1016/j.bioorg.2021.10483533798850Aouad M.R., Khan D.J., Said M.A., Al-Kaff N.S., Rezki N., Ali A.A., Bouqellah N., Hagar M. Novel 1, 2, 3-Triazole Derivatives as Potential Inhibitors against Covid-19 Main Protease: Synthesis, Characterization, Molecular Docking and DFT Studies. ChemistrySelect. 2021;6:3468. doi: 10.1002/slct.202100522.10.1002/slct.202100522PMC825097634230893Rezki N., Al-Yahyawi A.M., Bardaweel S.K., Al-Blewi F.F., Aouad M.R. Synthesis of novel 2, 5-disubstituted-1, 3, 4-thiadiazoles clubbed 1, 2, 4-triazole, 1, 3, 4-thiadiazole, 1, 3, 4-oxadiazole and/or Schiff base as potential antimicrobial and antiproliferative agents. Molecules. 2015;20:16048–16067. doi: 10.3390/molecules200916048.10.3390/molecules200916048PMC633188026364633Aouad M.R. Synthesis, Characterization and antimicrobial evaluation of some new Schiff, Mannich and acetylenic Mannich bases incorporating a 1, 2, 4-triazole nucleus. Molecules. 2014;19:18897–18910. doi: 10.3390/molecules191118897.10.3390/molecules191118897PMC627191725412038Fabre B., Filipiak K., Zapico J.M., Díaz N., Carbajo R.J., Schott A.K., Martínez-Alcázar M.P., Suárez D., Pineda-Lucena A., Ramos A. Progress towards water-soluble triazole-based selective MMP-2 inhibitors. Org. Biomol. Chem. 2013;11:6623–6641. doi: 10.1039/c3ob41046c.10.1039/c3ob41046c23989288Kreituss I., Rozenberga E., Zemītis J., Trapencieris P., Romanchikova N., Turks M. Discovery of aziridine-triazole conjugates as selective MMP-2 inhibitors. Chem. Heterocycl. Compd. 2013;49:1108–1117. doi: 10.1007/s10593-013-1351-9.10.1007/s10593-013-1351-9Hugenberg V., Breyholz H.-J.R., Riemann B., Hermann S., Schober O., Schäfers M., Gangadharmath U., Mocharla V., Kolb H., Walsh J. A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates:(radio) synthesis and in vitro and first in vivo evaluation. J. Med. Chem. 2012;55:4714–4727. doi: 10.1021/jm300199g.10.1021/jm300199g22540974Özdemir A., Sever B., Altıntop M.D., Temel H.E., Atlı Ö., Baysal M., Demirci F. Synthesis and evaluation of new oxadiazole, thiadiazole, and triazole derivatives as potential anticancer agents targeting MMP-9. Molecules. 2017;22:1109. doi: 10.3390/molecules22071109.10.3390/molecules22071109PMC615232228677624Abbasi M.A., Yu S.-M., Siddiqui S.Z., Kim S.J., Raza H., Hassan M., Butt A.R.S., Shah S.A.A., Seo S.-Y. Synthesis and exploration of a novel chlorobenzylated 2-aminothiazole-phenyltriazole hybrid as migratory inhibitor of B16F10 in melanoma cells. Toxicol. Rep. 2019;6:897–903. doi: 10.1016/j.toxrep.2019.08.016.10.1016/j.toxrep.2019.08.016PMC672724331516842Yurttaş L., Evren A.E., Kubilay A., Temel H.E., Çiftçi G.A. 3, 4, 5-Trisubstituted-1, 2, 4-triazole Derivatives as Antiproliferative Agents: Synthesis, In vitro Evaluation and Molecular Modelling. Lett. Drug Des. Discov. 2020;17:1502–1515. doi: 10.2174/1570180817999200712190831.10.2174/1570180817999200712190831Yurttaş L., Evren A.E., Kubilay A., Temel H.E. Synthesis of New 1, 2, 4-Triazole Derivatives and Investigation of Their Matrix Metalloproteinase-9 (MMP-9) Inhibition Properties. Acta Pharm. Sci. 2021;59:216–232.Patani G.A., LaVoie E.J. Bioisosterism: A rational approach in drug design. Chem. Rev. 1996;96:3147–3176. doi: 10.1021/cr950066q.10.1021/cr950066q11848856Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4.10.1016/0022-1759(83)90303-46606682El Ashry E.S.H., Awad L.F., Teleb M., Ibrahim N.A., Abu-Serie M.M., Abd Al Moaty M.N. Structure-based design and optimization of pyrimidine-and 1, 2, 4-triazolo [4, 3-a] pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorganic Chem. 2020;96:103616. doi: 10.1016/j.bioorg.2020.103616.10.1016/j.bioorg.2020.10361632032847Rizk O.H., Teleb M., Abu-Serie M.M., Shaaban O.G. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation. Bioorganic Chem. 2019;92:103189. doi: 10.1016/j.bioorg.2019.103189.10.1016/j.bioorg.2019.10318931473473Alonso F., Moglie Y., Radivoy G., Yus M. Unsupported copper nanoparticles in the 1, 3-dipolar cycloaddition of terminal alkynes and azides. Eur. J. Org. Chem. 2010;2010:1875–1884. doi: 10.1002/ejoc.200901446.10.1002/ejoc.200901446Alkhaldi A.A., Abdelgawad M.A., Youssif B.G., El-Gendy A.O., De Koning H.P. Synthesis, antimicrobial activities and GAPDH docking of novel 1, 2, 3-triazole derivatives. Trop. J. Pharm. Res. 2019;18:1101–1108. doi: 10.4314/tjpr.v18i5.27.10.4314/tjpr.v18i5.27Youssif B.G., Abdelrahman M.H. Synthesis and Biological Evaluation of Some New 1, 2, 3-Triazole Derivatives As Anti-microbial Agents. J. Adv. Chem. 2015;11:3473–3484. doi: 10.24297/jac.v11i2.2215.10.24297/jac.v11i2.2215Aouad M.R., Messali M., Rezki N., Al-Zaqri N., Warad I. Single proton intramigration in novel 4-phenyl-3-((4-phenyl-1H-1, 2, 3-triazol-1-yl) methyl)-1H-1, 2, 4-triazole-5 (4H)-thione: XRD-crystal interactions, physicochemical, thermal, Hirshfeld surface, DFT realization of thiol/thione tautomerism. J. Mol. Liq. 2018;264:621–630. doi: 10.1016/j.molliq.2018.05.085.10.1016/j.molliq.2018.05.085Prayong P., Barusrux S., Weerapreeyakul N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia. 2008;79:598–601. doi: 10.1016/j.fitote.2008.06.007.10.1016/j.fitote.2008.06.00718664377Ayoup M.S., Wahby Y., Abdel-Hamid H., Teleb M., Abu-Serie M.M., Noby A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur. J. Med. Chem. 2019;168:340–356. doi: 10.1016/j.ejmech.2019.02.051.10.1016/j.ejmech.2019.02.05130826510Aubrey B.J., Kelly G.L., Janic A., Herold M.J., Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–113. doi: 10.1038/cdd.2017.169.10.1038/cdd.2017.169PMC572952929149101Güllülü Ö., Hehlgans S., Rödel C., Fokas E., Rödel F. Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer—A Promising Signaling Network for Therapeutic Interventions. Cancers. 2021;13:624. doi: 10.3390/cancers13040624.10.3390/cancers13040624PMC791630733557398Sp N., Kang D.Y., Lee J.-M., Bae S.W., Jang K.-J. Potential Antitumor Effects of 6-Gingerol in p53-Dependent Mitochondrial Apoptosis and Inhibition of Tumor Sphere Formation in Breast Cancer Cells. Int. J. Mol. Sci. 2021;22:4660. doi: 10.3390/ijms22094660.10.3390/ijms22094660PMC812471933925065Di Minin G., Bellazzo A., Dal Ferro M., Chiaruttini G., Nuzzo S., Bicciato S., Piazza S., Rami D., Bulla R., Sommaggio R. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell. 2014;56:617–629. doi: 10.1016/j.molcel.2014.10.013.10.1016/j.molcel.2014.10.01325454946Junk D.J., Vrba L., Watts G.S., Oshiro M.M., Martinez J.D., Futscher B.W. Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia. 2008;10:450–461. doi: 10.1593/neo.08120.10.1593/neo.08120PMC237391018472962Laka K., Mapheto K., Mbita Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol. Rep. 2021;8:1265–1279. doi: 10.1016/j.toxrep.2021.06.015.10.1016/j.toxrep.2021.06.015PMC823316334195018Montalto F.I., De Amicis F. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020;9:2648. doi: 10.3390/cells9122648.10.3390/cells9122648PMC776388833317149Molecular Operating Environment (MOE) CCG. Montreal, Canada. [(accessed on 10 July 2021)]. Available online: http://www.chemcomp.com.Feng Y., Likos J.J., Zhu L., Woodward H., Munie G., McDonald J.J., Stevens A.M., Howard C.P., De Crescenzo G.A., Welsch D. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2002;1598:10–23. doi: 10.1016/S0167-4838(02)00307-2.10.1016/S0167-4838(02)00307-212147339Rowsell S., Hawtin P., Minshull C.A., Jepson H., Brockbank S.M., Barratt D.G., Slater A.M., McPheat W.L., Waterson D., Henney A.M. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol. 2002;319:173–181. doi: 10.1016/S0022-2836(02)00262-0.10.1016/S0022-2836(02)00262-012051944Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:1–13.PMC533560028256516 [(accessed on 20 July 2021)]. Available online: https://preadmet.bmdrc.kr/adme.Banerjee P., Eckert A.O., Schrey A.K., Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:W257–W263. doi: 10.1093/nar/gky318.10.1093/nar/gky318PMC603101129718510Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1.10.1016/S0169-409X(96)00423-111259830Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n.10.1021/jm020017n12036371Egan W.J., Merz K.M., Baldwin J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000;43:3867–3877. doi: 10.1021/jm000292e.10.1021/jm000292e11052792Yee S. In Vitro Permeability Across Caco-2 Cells (Colonic) Can Predict In Vivo (Small Intestinal) Absorption in Man—Fact or Myth. Pharm. Res. 1997;14:763–766. doi: 10.1023/A:1012102522787.10.1023/A:10121025227879210194Al-Hamdani U.J., Abbo H.S., Al-Jaber A.A., Titinchi S.J. New azo-benzothiazole based liquid crystals: Synthesis and study of the effect of lateral substituents on their liquid crystalline behaviour. Liq. Cryst. 2020;47:2257–2267. doi: 10.1080/02678292.2020.1766134.10.1080/02678292.2020.1766134Ma X.-L., Chen C., Yang J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin. 2005;26:500–512. doi: 10.1111/j.1745-7254.2005.00068.x.10.1111/j.1745-7254.2005.00068.x15780201Yamashita S., Furubayashi T., Kataoka M., Sakane T., Sezaki H., Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 2000;10:195–204. doi: 10.1016/S0928-0987(00)00076-2.10.1016/S0928-0987(00)00076-210767597Irvine J.D., Takahashi L., Lockhart K., Cheong J., Tolan J.W., Selick H.E., Grove J.R. MDCK (Madin–Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999;88:28–33. doi: 10.1021/js9803205.10.1021/js98032059874698Yazdanian M., Glynn S.L., Wright J.L., Hawi A. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res. 1998;15:1490. doi: 10.1023/A:1011930411574.10.1023/A:10119304115749755906
320328472021022420210224
1090-2120962020MarBioorganic chemistryBioorg ChemStructure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology.10361610361610.1016/j.bioorg.2020.103616S0045-2068(19)31828-0Recently, interest in matrix metalloproteinases (MMPs) -10 and -13 has been revitalized with the growing knowledge on their relevance within the MMPs network and significance of their inhibition for treatment of various diseases like arthritis, cancer, atherosclerosis and Alzheimer. Within this approach, dual MMP-10/13 inhibition was disclosed as new approach for targeted polypharmacology. While several efficient MMP-13 inhibitors are known, very few potent and selective MMP-10 inhibitors were reported. This study describes the design, synthesis and optimization of novel MMP-10/13 inhibitors with enhanced MMP-10 potency and selectivity towards polypharmacology. Starting with a lead fused pyrimidine-based MMP-13 inhibitor with weak MMP-10 inhibition, a structure-based design of pyrimidine and fused pyrimidine scaffolds was rationalized to enhance activity against MMP-10 in parallel with MMP-13. Firstly, a series of 6-methyl pyrimidin-4-one hydrazones 6-10 was synthesized via conventional and ultrasonic-assisted methods, then evaluated for MMP-10/13 inhibition. The most active derivative 9 exhibited acceptable dual potency with 7-fold selectivity for MMP-10 (IC50 = 53 nM) over MMP-13. Such hydrazones were then cyclized to the corresponding isomeric 1,2,4-triazolo[4,3-a]pyrimidines 12-19. Their MMP-10/13 inhibition assay revealed, in most cases, superior dual activities with general MMP-10 selectivity compared to the corresponding precursors 6-10. In addition, a clear structure activity relationship trend was deduced within the identified regioisomers, where the 5-oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives 15 and 16 were far more active against MMP-10/13 than their regioisomers 12 and 13. Remarkably, the p-bromophenyl derivative 16 exhibited the highest MMP-10 inhibition (IC50 = 24 nM), whereas the p-methoxy derivative 18 was the most potent MMP-13 inhibitor (IC50 = 294 nM). Moreover, 16 exhibited 19-fold selectivity for MMP-10 over MMP-13, 10-fold over MMP-9, and 29-fold over MMP-7. Docking studies were performed to provide reasonable explanation for structure-activity relationships and isoform selectivity. 16 and 18 were then evaluated for their anticancer activities against three human cancers to assess their therapeutic potential at cellular level via MTT assay. Both compounds exhibited superior anticancer activities compared to quercetin. Their in silico ligand efficiency metrics, physicochemical properties and ADME parameters were drug-like. Guided by such findings that point to 16 as the most promising compound in this study, further structure optimization was carried out via photoirradiation-mediated Dimroth rearrangement of the inactive triazolopyrimidine 13 to its potent regioisomer 16.Copyright © 2020 Elsevier Inc. All rights reserved.El AshryEl Sayed HelmyESHChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Electronic address: eelashry60@hotmail.com.AwadLaila FathyLFChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.TelebMohamedMDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.IbrahimNihal AhmedNAChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.Abu-SerieMarwa MMMMedical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt.Abd Al MoatyMohamed NabilMNChemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt. Electronic address: mohamednabil_sc_chem@yahoo.com.engJournal Article20200125
United StatesBioorg Chem13037030045-206801,2,4-triazolo(3,4-a)pyridine0Matrix Metalloproteinase Inhibitors0Pyridines0TriazolesEC 3.4.24.-MMP13 protein, humanEC 3.4.24.-Matrix Metalloproteinase 13EC 3.4.24.22MMP10 protein, humanEC 3.4.24.22Matrix Metalloproteinase 10IMCell Line, TumorDrug DesignDrug Screening Assays, AntitumorHumansMatrix Metalloproteinase 10metabolismMatrix Metalloproteinase 13metabolismMatrix Metalloproteinase InhibitorschemistrypharmacologyMolecular Docking SimulationNeoplasmsdrug therapymetabolismPolypharmacologyPyridineschemistrypharmacologyStructure-Activity RelationshipTriazoleschemistrypharmacologyAnticancerDimroth rearrangementMMP-10/13PolypharmacologyPyrimidineTriazolopyrimidine
20191028202012020201222020286020212256020202860ppublish3203284710.1016/j.bioorg.2020.103616S0045-2068(19)31828-0
trying2...
Publications by Mohamed Nabil Abd Al Moaty | LitMetric

Publications by authors named "Mohamed Nabil Abd Al Moaty"

Based on the "canonical" view of reactive oxygen species' (ROS) contribution to carcinogenesis, ROS induce oxidative stress and promote various tumor progression events. However, tumor cells also need to defend themselves against oxidative damage. This "heresy" was supported by several recent studies underlining the role of cellular antioxidant capacity in promoting metastasis and resistance to chemotherapy.

View Article and Find Full Text PDF

The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates.

View Article and Find Full Text PDF

Recently, interest in matrix metalloproteinases (MMPs) -10 and -13 has been revitalized with the growing knowledge on their relevance within the MMPs network and significance of their inhibition for treatment of various diseases like arthritis, cancer, atherosclerosis and Alzheimer. Within this approach, dual MMP-10/13 inhibition was disclosed as new approach for targeted polypharmacology. While several efficient MMP-13 inhibitors are known, very few potent and selective MMP-10 inhibitors were reported.

View Article and Find Full Text PDF