Publications by authors named "Mohamed Mohyeldin"

In the modern era, with the rapid growth of various industries, the issues of energy crisis and environmental pollution have garnered increasing attention. One significant source of industrial pollution is printing and dyeing wastewater. This wastewater often contains dyes that have aromatic structures and azo groups, such as Methyl orange (MO), which are both toxic and difficult to degrade.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in nanotechnology for nanomedicine show promise for enhancing cancer treatment through the use of innovative nanocomposite materials.
  • Metallic nanoparticles improve the delivery and release of anticancer drugs, reducing necessary dosages and minimizing harm to healthy cells.
  • Chitosan nanocomposites, especially when combined with gold and silver nanoparticles, offer improved stability and drug delivery capabilities, making them effective for targeting various anticancer drugs and enhancing therapeutic outcomes.
View Article and Find Full Text PDF

The present study introduces a new and straightforward method for the amination of Chitosan. This method involves coupling Chitosan (CS) with 2-chloroethylamine (ENH2) in a single step to produce an amino-ethyl Chitosan derivatives with increased amine group content (CS-ENH2) using click chemistry. The resulting derivatives were then crosslinked using Glutaraldehyde to form amino-ethyl Chitosan Schiff bases.

View Article and Find Full Text PDF

This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation.

View Article and Find Full Text PDF

Conventional cancer mono-therapeutic approaches including radiotherapy, surgery, and chemotherapy don't always achieve satisfactory outcomes and are frequently associated with significant limitations. Although chemotherapy is a vital intervention, its effectiveness is frequently inadequate and is associated with metastasis, multidrug resistance, off-target effect, and normal cells toxicity. Phototherapies are employed in cancer therapy, encompassing photo-dynamic and photo-thermal therapies which under favorable NIR laser light irradiation initiate the included photosensitizers and photo-thermal agents to generate ROS or thermal heat respectively for cancer cells destruction.

View Article and Find Full Text PDF

Clivia miniata (Lindl) is a member of the family Amaryllidaceae known for its chemically diverse alkaloids with a wide range of biological activities. Many reports revealed a direct role of oxidative stress in the early stage of Alzheimer's disease (AD). Meanwhile, β-site amyloid precursor protein cleavage enzyme 1 (BACE-1) is a molecular target for the treatment of AD.

View Article and Find Full Text PDF
Article Synopsis
  • The article referenced has a DOI (Digital Object Identifier) number for easy identification and access.
  • The correction pertains to inaccuracies or updates that needed to be addressed in the original publication.
  • This could involve revisions in data, methods, or interpretations to enhance the quality and reliability of the research.
View Article and Find Full Text PDF

Utilizing Glutaraldehyde crosslinked sodium carboxymethyl cellulose (CMC-GA) hydrogel and its nanographene oxide composite (CMC-GA-GOx), an effective carboxymethyl cellulose-graphene oxide biobased composites adsorbent was developed for the adsorption removal of methylene blue (MB) cationic dye contaminate from industrial wastewater. The CMC-GA-GOx composites developed were characterized using FTIR, RAMAN, TGA, SEM, and EDX analysis instruments. Through batch experiments, several variables affecting the removal of MB dye, including the biocomposites GO:CMC composition, adsorption time, pH and temperature, initial MB concentration, adsorbent dosage, and NaCl concentration, were investigated under different conditions.

View Article and Find Full Text PDF

Fe-gallic acid MOF embedded in an epoxy methyl cellulose polymer (CMC) thin film was synthesized and characterized by different micro-analytical tools such as: FE-SEM/EDX, XPS analysis, XRD analysis, FT-IR, and fluorescence spectroscopy. Fe-gallic acid MOF doped in a stable CMC polymer thin film is used as a novel sensor to identify CA 15-3 in the sera of patients suffering breast malignancy. The presence of appropriate functional groups in aqueous CA 15-3 solutions enables it to interact with the Fe-gallic acid MOF embedded in the thin film.

View Article and Find Full Text PDF

A comprehensive study of leaves, flowers, fruits, bark, and seeds' extracts of Gmelina arborea Roxb was performed for first time to investigate their anti-inflammatory, anti-Alzheimer, and antidiabetic activities. A thorough comparative phytochemical investigation of the five organs was performed using Tandem ESI-LC-MS. The biological investigation, further aided by multivariate data analysis and molecular docking proved the highly significant potential of using G.

View Article and Find Full Text PDF

This study was designed to synthesize a functionalized chitosan by coupling the amine groups of chitosan with 2,4,6-Trimethoxybenzaldehyde, producing a chitosan Schiff base (Cs-TMB). The development of Cs-TMB was verified employing FT-IR, H NMR, the electronic spectrum, and elemental analysis. Antioxidant assays exhibited significant ameliorations of Cs-TMB, reporting scavenging activities of 69.

View Article and Find Full Text PDF

Phototherapies or light mediated therapies, including mutually photothermal and photodynamic therapy that encompass irradiation of the target organs with light, have been widely employed as minimally invasive approach associated with negligible drug resistance for eradicating multiple tumors with minimal hazards to normal organs. Despite all these advantages, many obstacles in phototherapy hinder progress toward clinical application. Therefore, researchers have developed nano-particulate delivery systems integrated with phototherapy and therapeutic cytotoxic drugs to overcome these obstacles and achieve maximum efficacy in cancer treatment.

View Article and Find Full Text PDF

Water pollution is a dreadful affair that has incessantly aggravated, exposing our planet to danger. In particular, the persistent nitro aromatic compound like nitrophenols causes anxiety to the researchers due to their hazardous impacts, excessive usage, and removal difficulty. For this purpose, a novel multi-featured composite was constructed based on κ-Carrageenan (κ-Carr), MOF (MIL-125(Ti)), and magnetic FeO for efficient adsorptive removal of o-nitrophenol (o-NP).

View Article and Find Full Text PDF

The development of new antimicrobial agents has been drawing considerable attention due to the extreme escalation of multi-drug resistant microorganisms. We thus sought to ameliorate the antimicrobial activities of the chitosan (Cs) biopolymer by coupling chitosan with cyclohexanone and 2-N-methyl pyrrolidone, synthesizing two novel Schiff bases (CsSB1 and CsSB2), respectively. FT-IR, TGA, DSC, SEM, and potentiometric titration were employed to characterize the formulated chitosan derivatives.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) can infect millions of people worldwide causing mild to life-threating infections. The current study demonstrates the first comparative anti-HSV type 1 activity and phytochemical investigation of and collected from Egypt and Libya. Liquid chromatography/mass spectrometry (LC/MS) analysis allowed the identification of 56 and 38 compounds in the Egyptian and Libyan ethanolic extracts, respectively, in addition to 46 and 50 compounds in the Egyptian and Libyan ethanolic extracts, respectively.

View Article and Find Full Text PDF

Polyvinyl alcohol (PVA) is a safe and biodegradable polymer. Given the unique physical and chemical properties of PVA, we physically cross-linked PVA with kaolin (K) and cedar essential oil (Ced) using the freeze-thawing approach to fabricate PVA/Ced/K sponge hydrogels as hemostatic, antibacterial, and antioxidant wound healing materials. The physicochemical characteristics of PVA/Ced/K hydrogels, including water swelling profiles and gel fractions, were surveyed.

View Article and Find Full Text PDF

Methylene blue (MB) immobilized onto a sulfonated poly(glycidyl methacrylate) (SPGMA) polymer composite has been developed as a novel adsorbent for water treatment applications. The MB adsorptions onto sulfonated poly(glycidyl methacrylate) polymer characters have been studied. The adsorption isotherms, namely Langmuir and Freundlich, have been investigated.

View Article and Find Full Text PDF

Carrageenan is one of the most common carbohydrates utilised in the entrapment industry to immobilise cells and enzymes. However, it lacks functionality. Carrageenan has been grafted to produce fructose by covalently immobilising glucose isomerase (GI).

View Article and Find Full Text PDF

Methylene blue azo dye (MB) immobilized onto Poly (glycidyl methacrylate-Co-methyl methacrylate), (PGMA-co-PMMA), and sulphonated Poly (glycidyl methacrylate-Co-methyl methacrylate), (SPGMA-co-PMMA), polymers composites have been developed as novel adsorbents for water treatment applications. The effect of copolymer composition and sulphonation on the MB content has been studied. Maximum MB content was correlated to the Polyglycidyl methacrylate content for both native and sulphonated copolymers.

View Article and Find Full Text PDF

The arsenic (As) pollution of water has been eliminated via intensive scientific efforts, with the purpose of giving safe drinking water to millions of people across the world. In this study, the adsorption of As(V) from a synthetic aqueous solution was verified using a Bentonite-Anthracite@Zetag (BT-An@Zetag) composite. The SEM, FT-IR, XRD, DSC, TGA, and SBET techniques were used to characterize the (BT-An@Zetag) composite.

View Article and Find Full Text PDF

Marine algae have served as a treasure trove of structurally variable and biologically active metabolites. The present study emphasizes on UPLC-MS metabolites fingerprinting for the first systematic broad scale metabolites characterization of three different phyla of marine seaweeds; Ulva fasciata, Pterocladia capillacea and Sargassum hornschuchii along with Spirulina platensis harvested from the Mediterranean Sea. A total of 85 metabolites belonging to various classes including mostly fatty acids and their derivatives, terpenoids, amino acids and dipeptides with considerable amounts of polyphenolic compounds.

View Article and Find Full Text PDF

Xanthine oxidase (XO) has been well-recognized as a validated target for the treatment of hyperuricemia and gout. Currently, there are two drugs in clinical use that shut down XO overactivity, allopurinol and febuxostat; however, detrimental side effects restrict their applications. Propolis is a unique natural adhesive biomass of structurally variable and biologically active metabolites that exert remarkable health benefits.

View Article and Find Full Text PDF

The predominant impediments to cutaneous wound regeneration are hemorrhage and bacterial infections that lead to extensive inflammation with lethal impact. We thus developed a series of composite sponges based on polyvinyl alcohol (PVA) inspired by marjoram essential oil and kaolin (PVA/marjoram/kaolin), adopting a freeze-thaw method to treat irregular wounds by thwarting lethal bleeding and microbial infections. Microstructure analyses manifested three-dimensional interconnected porous structures for PVA/marjoram/kaolin.

View Article and Find Full Text PDF

The tremendous development in the industrial sector leads to discharging of the several types of effluents containing detrimental contaminants into water sources. Lately, the proliferation of toxic anions particularly phosphates and nitrates onto aquatic systems certainly depreciates the ecological system and causes a deadly serious problem. Chitosan (Cs) is one of the most auspicious biopolymer adsorbents that are being daily developed for removing of various contaminants from polluted water.

View Article and Find Full Text PDF

A novel chitosan grafted citronellal (Ch-Cit) schiff base amphiphilic polymer was developed for the adsorptive removal of oil spills. The chemical structure was verified by FT-IR spectroscopy and H NMR spectrometer, while the morphological changes and surface area were investigated by SEM and BET analysis tools. The amphiphilic character of Ch-Cit schiff base was controlled through variation of the grafting percentage (G%) of citronellal from 11 to 61%.

View Article and Find Full Text PDF