High-energy-density materials (HEDMs) are crucial in various applications, from energy storage to defense technologies. Transition metal polynitrides are promising candidates for HEDMs. Using single-crystal synchrotron X-ray diffraction, we investigated the crystal structures of niobium nitride, specifically NbN and NbN, under high-pressure conditions of up to 86 GPa.
View Article and Find Full Text PDFHigh-resolution single-crystal X-ray diffraction experiments on ZnSiO(OH)·HO hemimorphite were conducted at high pressure using diamond anvil cells at several different synchrotron facilities (ESRF, Elettra, DESY). Experimental data confirmed the existence of a previously reported phase transition and revealed the exact nature of the incommensurate modulation. We report the incommensurately modulated structure described in the (3+1)D space group Pnn2(0, β, 0)000.
View Article and Find Full Text PDFThe anhydrous pyrocarbonate and the first hydrogen pyrocarbonate Li[HCO] have been synthesized in a laser-heated diamond anvil cell at moderate pressures ( GPa). The structures of the two compounds have been obtained from single crystal X-ray diffraction data. Raman spectroscopy and DFT calculations have been employed to further characterize their structure-property relations.
View Article and Find Full Text PDFUnderstanding the fate of subducted carbonates is a prerequisite for the elucidation of the Earth's deep carbon cycle. Here we show that the concomitant presence of Ca[CO] with CO in a subducting slab very likely results in the formation of an anhydrous mixed pyrocarbonate, , at moderate pressure ( ≈ 20 GPa) and temperature ( ≈ 1500 K) conditions. We show that at these conditions can be obtained by reacting Ca[CO] with CO in a laser-heated diamond anvil cell.
View Article and Find Full Text PDFStructural studies of pyrene have been limited to below 2 GPa. Here, we report on investigations of pyrene up to ~35 GPa using in situ single-crystal synchrotron X-ray diffraction in diamond anvil cells and ab initio calculations. They reveal the phase transitions from pyrene-I to pyrene-II (0.
View Article and Find Full Text PDFBlack phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure ()-temperature () phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve.
View Article and Find Full Text PDFInorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN] and [CN] anions, as well as the high-pressure formed guanidinates featuring [CN] anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN-built anions are missing. In this study, four polycarbonitride compounds (LaCN, TbCN, CeCN, and TbCN) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa.
View Article and Find Full Text PDFHexagonal boron nitride (hBN) and black phosphorus (bP) are crystalline materials that can be seen as ordered stackings of two-dimensional layers, which lead to outstanding anisotropic physical properties. Knowledge of the thermal equations of state of hBN and bP is of great interest in the field of 2D materials for a better understanding of their anisotropic thermo-mechanical properties and exfoliation mechanism towards the preparation of important single-layer materials like hexagonal boron nitride nanosheets and phosphorene. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the thermoelastic parameters of hBN and bP.
View Article and Find Full Text PDFA chemical reaction between Sb and N was induced under high-pressure (32-35 GPa) and high-temperature (1600-2200 K) conditions, generated by a laser heated diamond anvil cell. The reaction product was identified by single crystal synchrotron X-ray diffraction at 35 GPa and room temperature as crystalline antimony nitride with Sb N stoichiometry and structure belonging to orthorhombic space group Cmc2 . Only Sb-N bonds are present in the covalent bonding framework, with two types of Sb atoms respectively forming SbN distorted octahedra and trigonal prisms and three types of N atoms forming NSb distorted tetrahedra and NSb trigonal pyramids.
View Article and Find Full Text PDFThe elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2023
The stabilization of nitrogen-rich phases presents a significant chemical challenge due to the inherent stability of the dinitrogen molecule. This stabilization can be achieved by utilizing strong covalent bonds in complex anions with carbon, such as cyanide CN and NCN carbodiimide, while more nitrogen-rich carbonitrides are hitherto unknown. Following a rational chemical design approach, we synthesized antimony guanidinate SbCN at pressures of 32-38 GPa using various synthetic routes in laser-heated diamond anvil cells.
View Article and Find Full Text PDFWhile polymeric carbon monoxide (pCO) has been experimentally found to remain amorphous and undecomposed at room temperature up to 50 GPa, the question of whether crystalline counterparts of it can be obtained naturally raises. From different computational studies, it can be inferred that either the crystallization of amorphous pCO (a-pCO) or its decomposition into a mixture of CxOy suboxides (x > y) or carbon and CO2 may occur. In this study, we report experimental investigations of the high temperature (700-4000 K) transformation of a-pCO in the 47-120 GPa pressure range, conducted by x-ray diffraction in laser heated diamond anvil cells.
View Article and Find Full Text PDFThe Extremely Brilliant Source (EBS) is the experimental implementation of the novel Hybrid Multi Bend Achromat (HMBA) storage ring magnetic lattice concept, which has been realised at European Synchrotron Radiation Facility. We present its successful commissioning and first operation. We highlight the strengths of the HMBA design and compare them to the previous designs, on which most operational synchrotron X-ray sources are based.
View Article and Find Full Text PDFJ Geophys Res Solid Earth
November 2022
FeO represents an important end-member for planetary interiors mineralogy. However, its properties in the liquid state under high pressure are poorly constrained. Here, in situ high-pressure and high-temperature X-ray diffraction experiments, ab initio simulations, and thermodynamic calculations are combined to study the local structure and density evolution of liquid FeO under extreme conditions.
View Article and Find Full Text PDFHighly brilliant synchrotron source is indispensable to track pressure-induced phenomena in confined crystalline samples in megabar range. In this article, a number of experimental variables affecting the quality high-pressure single-crystal x-ray diffraction data is discussed. An overview of the recent advancements in x-ray diffraction techniques at extreme conditions, in the frame of European Synchrotron Radiation Facility (ESRF)- Extremely Bright Source (EBS), is presented.
View Article and Find Full Text PDFThe direct chemical reactivity between phosphorus and nitrogen was induced under high-pressure and high-temperature conditions (9.1 GPa and 2000-2500 K), generated by a laser-heated diamond anvil cell and studied by synchrotron X-ray diffraction, Raman spectroscopy, and DFT calculations. α-PN and γ-PN were identified as reaction products.
View Article and Find Full Text PDFStudies of dense carbon materials formed by bolide impacts or produced by laboratory compression provide key information on the high-pressure behavior of carbon and for identifying and designing unique structures for technological applications. However, a major obstacle to studying and designing these materials is an incomplete understanding of their fundamental structures. Here, we report the remarkable structural diversity of cubic/hexagonally (/) stacked diamond and their association with diamond-graphite nanocomposites containing sp-/sp-bonding patterns, i.
View Article and Find Full Text PDFStructural evolution of cesium triiodide at high pressures has been revealed by synchrotron single-crystal X-ray diffraction. Cesium triiodide undergoes a first-order phase transition above 1.24(3) GPa from an orthorhombic to a trigonal system.
View Article and Find Full Text PDFStructural transformation of hot dense water ice is investigated by combining synchrotron x-ray diffraction and a laser-heating diamond anvil cell above 25 GPa. A transition from the body-centered-cubic (bcc) to face-centered-cubic (fcc) oxygen atoms sublattices is observed from 57 GPa and 1500 K to 166 GPa and 2500 K. That is the structural signature of the transition to fcc superionic (fcc SI) ice.
View Article and Find Full Text PDFChemical reactivity between As and N , leading to the synthesis of crystalline arsenic nitride, is here reported under high pressure and high temperature conditions generated by laser heating in a diamond anvil cell. Single-crystal synchrotron X-ray diffraction at different pressures between 30 and 40 GPa provides evidence for the synthesis of a covalent compound of AsN stoichiometry, crystallizing in a cubic P2 3 space group, in which each of the two elements is single-bonded to three atoms of the other and hosts an electron lone pair, in a tetrahedral anisotropic coordination. The identification of characteristic structural motifs highlights the key role played by the directional repulsive interactions between non-bonding electron lone pairs in the formation of the AsN structure.
View Article and Find Full Text PDFWe report a new technique for torsional testing of materials under giga-pascal pressures, which uses a shearing module in a large-volume Paris-Edinburgh press in combination with high-resolution fast radiographic x-ray imaging. The measurement of the relative amplitude and phase lag between the cyclic displacement in the sample and a standard material (AlO) provides the effective shear modulus and attenuation factor for the sample. The system can operate in the 0.
View Article and Find Full Text PDFEarth's deep carbon cycle affects atmospheric CO, climate, and habitability. Owing to the extreme solubility of CaCO, aqueous fluids released from the subducting slab could extract all carbon from the slab. However, recycling efficiency is estimated at only around 40%.
View Article and Find Full Text PDFGe and Sn are unreactive at ambient conditions. Their significant promise for optoelectronic applications is thus largely confined to thin film investigations. We sought to remove barriers to reactivity here by accessing a unique pressure, 10 GPa, where the two elements can adopt the same crystal structure (tetragonal, 4/) and exhibit compatible atomic radii.
View Article and Find Full Text PDFWe present a study on the phase stability of dense carbon dioxide (CO_{2}) at extreme pressure-temperature conditions, up to 6200 K within the pressure range 37±9 to 106±17 GPa. The investigations of high-pressure high-temperature in situ x-ray diffraction patterns recorded from laser-heated CO_{2}, as densified in diamond-anvil cells, consistently reproduced the exclusive formation of polymeric tetragonal CO_{2}-V at any condition achieved in repetitive laser-heating cycles. Using well-considered experimental arrangements, which prevent reactions with metal components of the pressure cells, annealing through laser heating was extended individually up to approximately 40 min per cycle in order to keep track of upcoming instabilities and changes with time.
View Article and Find Full Text PDF