In the United States, hundreds of thousands of undocumented orphan wells have been abandoned, leaving the burden of managing environmental hazards to governmental agencies or the public. These wells, a result of over a century of fossil fuel extraction without adequate regulation, lack basic information like location and depth, emit greenhouse gases, and leak toxic substances into groundwater. For most of these wells, basic information such as well location and depth is unknown or unverified.
View Article and Find Full Text PDFTo achieve net-zero emissions by 2050, we need economic means of sequestering carbon dioxide (CO) and reducing greenhouse gas emissions (GHG). We analyze the sequestration potential of the Intermountain West (I-West) region, US, as a primary energy transition hub through analysis of wellbore retrofit potential and emission reduction in both fugitive gas abatement and flare gas. We selected the I-West region due to its abundant energy sources and oil and gas production legacy.
View Article and Find Full Text PDFThroughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in the number of mesh elements. For instance, quantitative predictions of transport in nanoporous media, critical to hydrocarbon extraction from tight shale formations, are impossible without accounting for molecular-level interactions. Similarly, inertial confinement fusion simulations rely on numerical diffusion to simulate molecular effects such as non-local transport and mixing without truly accounting for molecular interactions.
View Article and Find Full Text PDFBurning associated gas has been a prevailing problem across the world for decades. This practice consumes billions of (US) dollars' worth of valuable natural gas, contributes billions of metric tons of carbon dioxide (CO) to the atmosphere, and releases volatile chemicals to nearby communities. To assess the prevalence of wellbore flaring within the Intermountain West (I-West) region, we analyzed data from the Nightfire project and contrasted it with wellbore surface hole locations.
View Article and Find Full Text PDFFine-scale models that represent first-principles physics are challenging to represent at larger scales of interest in many application areas. In nanoporous media such as tight-shale formations, where the typical pore size is less than 50 nm, confinement effects play a significant role in how fluids behave. At these scales, fluids are under confinement, affecting key properties such as density, viscosity, adsorption, etc.
View Article and Find Full Text PDF