Maize (Zea mays) plants over-expressing or suppressing the class 1 Phytoglobin (ZmPgb1.1) were evaluated for their ability to cope with low temperature stress. Cold treatment (10 °C day/4 °C night) depressed several gas exchange parameters including photosynthetic rate, stomatal conductance and transpiration, while elevated the levels of reactive oxygen species (ROS) and ROS-induced damage.
View Article and Find Full Text PDFExcess moisture in the form of waterlogging or full submergence can cause severe conditions of hypoxia or anoxia compromising several physiological and biochemical processes. A decline in photosynthetic rate due to accumulation of ROS and damage of leaf tissue are the main consequences of excess moisture. These effects compromise crop yield and quality, especially in sensitive species, such as soybean (Glycine max.
View Article and Find Full Text PDFWater deficit limits plant growth and development by interfering with several physiological and molecular processes both in root and shoot tissues. Through their ability to scavenge nitric oxide (NO), phytoglobins (Pgbs) exercise a protective role during several conditions of stress. While their action has been mainly documented in roots, it is unclear whether Pgb exercises a specific and direct role in shoot tissue.
View Article and Find Full Text PDFOver-expression of the corn phytoglobin ZmPgb1.2 increases tolerance to waterlogging, while suppression of ZmPgb1.2 compromises plant growth.
View Article and Find Full Text PDFDifferentiation of tracheary elements (TEs) in vitro was affected by the expression level of the Arabidopsis thaliana Col-0 phytoglobins (Pgbs). Over-expression of Pgb1 or Pgb2 (35S:Pgb1 or 35S:Pgb2 lines) reduced the differentiation process while suppression of either Pgb (Pgb1-RNAi or pgb2 lines) enhanced the production of TEs. The inductive effect of Pgb suppression on TE differentiation was linked to the reduced expression of the transcription factor MYC2.
View Article and Find Full Text PDFDuring maize somatic embryogenesis, suppression of phytoglobins (Pgbs) reduced ABA levels leading to ethylene-induced programmed cell death in the developing embryos. These effects modulate embryonic yield depending on the cellular localization of specific phytoglobin gene expression. Suppression of Zea mays phytoglobins (ZmPgb1.
View Article and Find Full Text PDFBy regulating the levels of nitric oxide (NO) in a cell and tissue specific fashion, Phytoglobins (Pgbs), plant hemoglobin-like proteins, interfere with many NO-mediated pathways participating in developmental and stress-related responses. Recent evidence reveals that one of the functions of Pgbs is to protect the root apical meristem (RAM) from stress conditions by retaining the viability and function of the quiescent center (QC), required to maintain the stem cells in an undifferentiated state and ensure proper tissue patterning and root viability. Based on this and other evidence, it is suggested that Pgbs regulate cell fate by modulating NO homeostasis.
View Article and Find Full Text PDFMaintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1).
View Article and Find Full Text PDFMutation of phytoglobin 2 (Pgb2) increases the number of somatic embryos in Arabidopsis. To assess the effects of the cellular localization of Pgb2 on embryo formation, an inducible system expressing a fusion protein consisting of Pgb2 linked to the steroid-binding domain of the rat glucocorticoid receptor (GR) was introduced in a pgb2 mutant line lacking the ability to express Pgb2. In this transgenic system, Pgb2 remains in the cytoplasm but migrates into the nucleus upon exposure to dexamethasone (DEX).
View Article and Find Full Text PDFPlants respond to hypoxic stress through either acclimation to the stress or avoidance of it, as they do to most environmental stresses. The hypothesis that has general consensus among the community is that ethylene response factors (ERFs) are central elements that control both types of responses to hypoxia. Recent studies suggest that this may not be the case for all cells experiencing hypoxic stress.
View Article and Find Full Text PDFHypoxic root growth in maize (Zea mays) is influenced by the expression of phytoglobins (ZmPgbs). Relative to the wild type, suppression of ZmPgb1.1 or ZmPgb1.
View Article and Find Full Text PDFBackground and Aims Excess water is a limiting factor for crop productivity. Under conditions of full submergence or flooding, plants can experience prolonged oxygen depletion which compromises basic physiological and biochemical processes. Severe perturbations of the photosynthetic machinery with a concomitant decline in photosynthetic potential as a result of elevated levels of reactive oxygen species (ROS) are the major consequences of water excess.
View Article and Find Full Text PDFPrevious studies have shown that the beneficial effect of suppression of the Arabidopsis phytoglobin 2 gene, PGB2, on somatic embryogenesis occurs through the accumulation of nitric oxide (NO) within the embryogenic cells originating from the cultured explant. NO activates the expression of Allene oxide synthase (AOS) and Lipoxygenase 2 (LOX2), genes encoding two key enzymes of the jasmonic acid (JA) biosynthetic pathway, elevating JA content within the embryogenic tissue. The number of embryos in the single aos1-1 mutant and pgb2-aos1-1 double mutant declined, and was not rescued by increasing levels of NO stimulating embryogenesis in wild-type tissue.
View Article and Find Full Text PDFEmbryogenesis is a fascinating event during the plant life cycle encompassing several steps whereby the zygote develops into a fully developed embryo which, in angiosperms, is composed of an axis separating the apical meristems, and two cotyledons. Recapitulation of embryogenesis can also occur in vitro through somatic embryogenesis, where somatic cells are induced to form embryos, and androgenesis, in which embryos originate from immature male gametophytes. Besides cell division and differentiation, embryo patterning in vivo and in vitro requires the dismantling and selective elimination of cells and tissues via programmed cell death (PCD).
View Article and Find Full Text PDFJ Genet Eng Biotechnol
June 2015
The study confirms the role of the two hemoglobin genes ( and ) during somatic embryogenesis and proposes the involvement of ethylene in the regulation of embryo development. Suppression of both and results in accumulation of nitric oxide (NO) and a different embryogenic response. Compared to WT tissue, down-regulation of (Glb1 RNAi line) compromises the embryogenic process, while repression of (Glb2-/- line) increases the number of embryos.
View Article and Find Full Text PDFPlant Signal Behav
August 2013
Plant hemoglobins are ubiquitous molecules involved in several aspects of plant development and stress responses. Studies on the functional aspects of plant hemoglobins at the cellular level in these processes are limited, despite their ability to scavenge nitric oxide (NO), an important signal molecule interfering with hormone synthesis and sensitivity. This mini-review summarizes current knowledge on plant hemoglobins, analyzes their participation in plant pathogen interaction and embryogenesis and proposes a possible model centering on jasmonic acid (JA) as a downstream component of hemoglobin responses.
View Article and Find Full Text PDF