Background: The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health.
View Article and Find Full Text PDFCandida albicans is one of the most dangerous pathogenic fungi in the world, according to the classification of the World Health Organization, due to the continued development of its resistance to currently available anticandidal agents. To overcome this problem, the current work provided a simple, one-step, cost-effective, and safe technique for the biosynthesis of new functionalized anticandidal selenium nanoparticles (Se NPs) against C. albicans ATCC10231 using the cell-free supernatant of Limosilactobacillus fermentum (OR553490) strain.
View Article and Find Full Text PDFNanocomposites incorporating titanium dioxide (TiO) have a significant potential for various industrial and medical applications. These nanocomposites exhibit selectivity as antimicrobial and anticancer agents. Antimicrobial activity is crucial for medical uses, including applications in food processing, packaging, and surgical instruments.
View Article and Find Full Text PDFSilicon (Si) and its nanomaterials could help plants cope with different negative effects of abiotic and/or biotic stresses. In this study, the antifungal role of silver/silicon dioxide nanocomposite (Ag/SiONC) biosynthesized using a free-cell supernatant of Escherichia coli D8 was investigated for controlling the growth parameters and yield of faba bean (Vicia faba L.) infected by Botrytis cinerea.
View Article and Find Full Text PDFA novel biosynthesis of dual reduced graphene oxide/silver nanocomposites (rGO/AgNC) using the crude metabolite of Escherichia coli D8 (MF06257) strain and sunlight is introduced in this work. Physicochemical analysis of these rGO/AgNC revealed that they are sheet-like structures having spherically shaped silver nanoparticles (AgNPs) with an average particle size of 8 to 17 nm, and their absorption peak ranged from 350 to 450 nm. The biosynthesized rGO/AgNC were characterized by UV-vis and FT-IR spectra, X-ray diffraction, Zeta potential and transmission electron microscopy.
View Article and Find Full Text PDF