Accurate determination of glutathione (GSH) in food supplements and human biological fluids is critical for preventing disorders related to GSH imbalances. To address this, a selective and sensitive fluorometric method was developed for GSH detection using nickel nanoclusters functionalized with polyvinylpyrrolidone (PVP) and 4-mercaptobenzoic acid (4-MBA) (PVP/4-MBA@Ni NCs). In this system, PVP serves as the stabilizer, while 4-MBA functions as both a stabilizer and reducing agent.
View Article and Find Full Text PDFTerbium and nitrogen co-doped carbon dots (Tb@N-CDs), combined with α-lipoic acid-functionalized copper nanoclusters (LA@CuNCs), were proposed for the ratiometric detection of quinolone (QA) antibiotics. In this system, Tb@N-CDs facilitate the aggregation of LA@CuNCs, enhancing its fluorescence emission at 670 nm via aggregation-induced emission enhancement (AIEE). Meanwhile, the fluorescence emission of Tb@N-CDs at 460 nm diminishes due to Förster resonance energy transfer (FRET).
View Article and Find Full Text PDFAn electrochemical sensing approach was developed for the detection of the agricultural antibiotic drug kasugamycin. The method involves the construction of an electrochemical sensor comprising molecularly imprinted polymers (MIPs) embedded within a carbon paste (CP) matrix. The MIPs are designed to have imprinted sites that match the size and geometry of the Cu(II)-kasugamycin coordinated complex.
View Article and Find Full Text PDFIn the current study, the potential interaction mechanisms between capmatinib (CAP), a selective tyrosine kinase inhibitor, and calf thymus double-stranded DNA (ds-DNA) were evaluated. In this research, we construct an amplified electrochemical platform based on a disposable pencil graphite electrode (PGE) modified with nanostructured CeO decorated carbon nanofiber ceramic film (CeNPs@CNF-CF) for monitoring CAP-dsDNA interaction at physiological pH. The morphology and structure of the obtained CeNPs@CNF nanocomposite were characterized.
View Article and Find Full Text PDFThis study presents a novel dual-modal approach for glutathione (GSH) detection using blue and yellow dual-emission carbon dots (BY-CDs) and bromothymol blue (BTB) at pH 8.0. The method employs both colorimetric and fluorometric detection modes, offering a new perspective on GSH quantification.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Melamine, often used as an adulterant in infants' formula due to its high protein content, can be harmful when ingested in large amounts, leading to the formation of cyanurate-melamine co-crystals in infants and potentially causing kidney damage. In this study, we introduce a fluorescent method for the selective and reliable detection of melamine in milk and infants' formula. The fluorescent probe comprises copper nanoclusters (Cu NCs) functionalized with thiosalicylic acid (TSA) and polyvinylpyrrolidone (PVP) as double-protecting ligands.
View Article and Find Full Text PDFThe development of dual-emission ratiometric fluorescent probes with aggregation-induced emission enhancement (AIEE) overcomes the limitations of gold nanocluster (Au NC)-based probes, particularly their weak intrinsic fluorescence, in real-world applications. These AIEE probes also exhibit superior detection limits and enhanced sensitivity. A novel combination for the reliable fluorometric detection of glutathione (GSH) was proposed, utilizing aggregation-induced emission enhancement (AIEE) facilitated by electrostatic interaction and spatial confinement.
View Article and Find Full Text PDFThis study presents a novel and selective method for the determination of l-asparagine in diverse potato varieties under various storage conditions. L-asparagine levels serve as a crucial indicator for acrylamide formation, a hazardous substance in processed potato products. The fluorometric method utilized blue-emitting CDs (B-CDs), orange-emitting CDs (O-CDs), and the enzyme L-asparaginase for ratiometric detection of L-asparagine.
View Article and Find Full Text PDFIn this research paper, a novel "signal on-off" ratiometric-based electrochemical platform was developed for the sensitive and selective detection of captopril. Ratiometric responses were achieved by fabricating molecularly imprinted polymers (MIPs) on the surface of a graphite electrode (GE) decorated with nitrogen (N) and sulfur (S) co-doped porous carbon and silver nanoparticles (Ag). The MIP layer was formed electropolymerization of copper coordinated with pyrrole-3-carboxylic acid (functional monomer).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
A novel fluorometric method for the determination of L-asparaginase, an enzyme crucial in cancer therapy and food industry applications, is presented. This sensitive and selective approach utilizes L-asparagine and two pH-sensitive carbon dots (blue-N-CDs and red-N-CDs) as probes. The interaction between L-asparagine and L-asparaginase liberates ammonia, causing an increase in pH.
View Article and Find Full Text PDFFor the first time, we introduce a novel disposable and ultrasensitive sensing electrode made up of nanosized ceria uniformly loaded carbon nanofibers (CeNPs@CNF) sol-gel nanoceramic film (CF) wrapped on eco-friendly and inexpensive pencil graphite rods (PGRs) to explore their electro-catalytic detection of the anticancer drug capmatinib (CMB). The as-prepared CeNPs@CNF hybrid nanocomposite was described by XRD, SEM, TEM, HRTEM, and EDX analysis. The CV study clearly demonstrated that, the disposable CeNPs@CNF-CF/PGRE sensor exhibited excellent redox activities in the ideal probe [Fe(CN)].
View Article and Find Full Text PDFLysine-capped gold nanoclusters doped with silver (LYS@Ag/Au NCs) have been developed for the sensitive and selective "turn-off" fluorescence detection of histamine. This fluorescent probe demonstrates excellent stability and a high quantum yield of 9.45%.
View Article and Find Full Text PDFThis study introduces a novel approach for the simultaneous determination of topotecan (TOP) and pantoprazole (PNT), two drugs whose interaction is critical in clinical applications. The significance of this study originates from the need to understand the pharmacokinetic changes of TOP after PNT administration, which can inform necessary dose adjustments of TOP. To achieve this, nitrogen blue emissive carbon dots (B@NCDs) were produced and employed due to their unique fluorescent properties.
View Article and Find Full Text PDFA new fluorescence sensing approach has been proposed for the precise determination of the anti-cancer drug oxaliplatin (Oxal-Pt). This method entails synthesizing blue-emitting copper nanoclusters (CuNCs) functionalized with bovine serum albumin (BSA) as the stabilizing agent. Upon excitation at 360 nm, the resultant probe exhibits emission at 460 nm.
View Article and Find Full Text PDFA novel ratiometric fluorescence probe was developed for the determination of azithromycin (AZM) and sulfide ions based on the differential modulation of red emissive carbon dots (R-N@CDs) and blue emissive carbon dots (B-NS@CDs). The addition of sulfide anion selectively quenched the red emission of R-N@CDs while the blue emission of B-NS@CDs unaffected. Upon subsequent introduction of AZM to this R-N@CDs@sulfide system, the quenched red fluorescence was restored.
View Article and Find Full Text PDFIn this study, we present a thoughtful integration of a dispersive solid-phase sorbent and oxine for the ultrasensitive and highly selective determination of Al ions. Cobalt ferrite nanoparticles (CoFeO NPs) modified with oxine were employed to facilitate the pre-concentration and estimation of Al, forming highly fluorescent chelate. The modification process included the assistance of sodium dodecyl sulfate (SDS) and sonication.
View Article and Find Full Text PDFThis work presents a simple yet selective fluorometric protocol for the quantification of vancomycin, an important antibiotic for treating infections caused by Gram-positive bacteria. A novel ratiometric fluorometric method for the determination of vancomycin is developed based on dual emissive carbon dots (DECDs) with emission at 382 nm and 570 nm in combination with Co ions. Upon addition of Coions, the fluorescence at 382 nm of DECDs is enhanced while emission at 570 nm remains constant.
View Article and Find Full Text PDFIn the present study, nanoceria-decorated MWCNTs (CeNPs@MWCNTs) were synthesized using a simple and inexpensive process. Molnupiravir (MPV) has gained considerable attention in recent years due to the infection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Since some people infected with COVID-19 experience fever and headaches, paracetamol (PCM) has been prescribed to relieve these symptoms.
View Article and Find Full Text PDFA novel electrochemical sensor with a dual-template molecular imprinting technology was fabricated for the simultaneous detection of paracetamol (PAR) and isoniazid (INZ). The sensor was constructed using nitrogen and sulfur co-doped molybdenum carbide (N, S@MoC) and a thin layer of electro-polymerized methylene blue was applied onto the surface of the N, S@MoC. The electrochemical sensor demonstrated remarkable analytical efficiency for the concurrent PAR and INZ quantification under optimal circumstances.
View Article and Find Full Text PDFEscherichia coli O157:H7 (E. coli O157:H7) emerges as a significantly worrisome pathogen associated with foodborne illnesses, emphasizing the imperative for creating precise detection tools. In this investigation, we developed a sensitive colorimetric biosensor for detecting E.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2024
Cisplatin (CIS) and etoposide (ETP) combination therapy is highly effective for treating various cancers. However, the potential for pharmacokinetic interactions between these drugs necessitates selective sensing methods to quantitate both CIS and ETP levels in patient's plasma. This work develops a dual fluorescence probe strategy using glutathione-capped copper nanoclusters (GSH-CuNCs) and nitrogen-doped carbon dots (N-CDs) for the simultaneous analysis of CIS and ETP.
View Article and Find Full Text PDFA new nanocomposite consisting of lanthanum ferrite nanoparticles (LaFeO NPs) integrated with carbon nanotubes (CNTs) was fabricated via facile sonochemical approach. The engineered nanocomposite was applied to simultaneously determine acetaminophen (ACP) and dopamine (DA) in a binary mixture. The LaFeO NPs@CNT probe possesses several advantages such as superior conductivity, large surface area, and more active sites, improving its electrocatalytic activity towards ACP and DA.
View Article and Find Full Text PDFA novel selective and reliable ratiometric fluorescence probe has been successfully synthesized for precise, sensitive, and simple quantitation of methotrexate (MTX). Hydrothermal method was employed to fabricate nitrogen-doped carbon dots using Annona squamosa seeds (AS-CDs) as a starting material, and their characteristics were confirmed using transmission electron microscopy (TEM), UV-Vis spectroscopy, fluorescence spectroscopy, X-ray diffractometry (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). The ratiometric fluorometric assay, which is based on measuring the ratio of emissions (F/F), has a wide detection range of 5-2000 ng /mL and a limit of detection (LOD, S/N = 3) of 1.
View Article and Find Full Text PDF