Publications by authors named "Mohamed M Eissa"

The effect of different contents of fullerene on the properties of polyurethane resins (PUs), including rheology and thermal properties, was investigated. Polyurethane resins were prepared through polyaddition reactions using different isocyanate monomers such as isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), and different polyols, such as poly(oxytetramethylene) glycol (PTMG), the triol trade name FA-703, and polypropylene glycols (PPG), at an NCO/OH ratio 0.94 and a temperature of 100 °C.

View Article and Find Full Text PDF

Hybrid inorganic colloidal particles have attracted a great attention in the last years, and they have been largely used in various applications and more particularly in biomedical nanotechnology. Recently, they are used as carriers for biomolecules, and exploited for use in microsystems, microfluidics and in lab-on-a chip based bionanotechnology. Various kinds of hybrid particles can be listed starting from classical inorganic nanoparticles such as silica, gold, silver, iron oxide and those exhibiting intrinsic properties such as semiconducting nanoparticles (e.

View Article and Find Full Text PDF

Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Epoxy-functionalized magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles (mPDGs) were prepared by co-polymerization of 1,4-divinylbenzene and glycidyl methacrylate monomers. The reaction was conducted by batch emulsion polymerization in the presence of an oil in water magnetic emulsion as a seed. The chemical composition, morphology, iron oxide content, magnetic properties, particle size and colloidal stability of the prepared magnetic polymer particles were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetric analysis, vibrating sample magnetometry, dynamic light scattering, and zeta potential determination, respectively.

View Article and Find Full Text PDF