Publications by authors named "Mohamed M Dessouky"

An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification.

View Article and Find Full Text PDF

A central nervous system disorder is usually referred to as epilepsy. In epilepsy brain activity becomes abnormal, leading to times of abnormal behavior or seizures, and at times loss of awareness. Consequently, epilepsy patients face problems in daily life due to precautions they must take to adapt to this condition, particularly when they use heavy equipment, e.

View Article and Find Full Text PDF

Seizure is an abnormal electrical activity of the brain. Neurologists can diagnose the seizure using several methods such as neurological examination, blood tests, computerized tomography (CT), magnetic resonance imaging (MRI) and electroencephalogram (EEG). Medical data, such as the EEG signal, usually includes a number of features and attributes that do not contains important information.

View Article and Find Full Text PDF

This paper presents a new approach for modeling of DNA sequences for the purpose of exon detection. The proposed model adopts the sum-of-sinusoids concept for the representation of DNA sequences. The objective of the modeling process is to represent the DNA sequence with few coefficients.

View Article and Find Full Text PDF

The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article.

View Article and Find Full Text PDF