Background: Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes.
View Article and Find Full Text PDFLoperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity.
View Article and Find Full Text PDFDrug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery.
View Article and Find Full Text PDFTRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1.
View Article and Find Full Text PDFBackground: Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity.
View Article and Find Full Text PDFEarly identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes).
View Article and Find Full Text PDFNeurogenin 2 encodes a neural-specific transcription factor (NGN2) able to drive neuronal fate on somatic and stem cells. NGN2 is expressed in neural progenitors within the developing central and peripheral nervous systems. Overexpression of NGN2 in human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells has been shown to efficiently trigger conversion to neurons.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
November 2021
Introduction: People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is a sudden unexpected death in epilepsy (SUDEP). The mechanism of SUDEP remains largely unresolved and the lack of preclinical models to study the potential mechanism underlying SUDEP is a problem.
View Article and Find Full Text PDFAstrocytes, the main supportive cell type of the brain, show functional impairments upon ageing and in a broad spectrum of neurological disorders. Limited access to human astroglia for pre-clinical studies has been a major bottleneck delaying our understanding of their role in brain health and disease. We demonstrate here that functionally mature human astrocytes can be generated by SOX9 overexpression for 6 days in pluripotent stem cell (PSC)-derived neural progenitor cells.
View Article and Find Full Text PDFThe human cathelicidin LL-37 serves a critical role in the innate immune system defending bacterial infections. LL-37 can interact with molecules of the cell wall and perforate cytoplasmic membranes resulting in bacterial cell death. To test the interactions of LL-37 and bacterial cell wall components we crystallized LL-37 in the presence of detergents and obtained the structure of a narrow tetrameric channel with a strongly charged core.
View Article and Find Full Text PDFAlzheimers Dement
October 2018
Introduction: Tauopathies are neurodegenerative diseases characterized by TAU protein-related pathology, including frontotemporal dementia and Alzheimer's disease among others. Mutant TAU animal models are available, but none of them faithfully recapitulates human pathology and are not suitable for drug screening.
Methods: To create a new in vitro tauopathy model, we generated a footprint-free triple MAPT-mutant human induced pluripotent stem cell line (N279K, P301L, and E10+16 mutations) using clustered regularly interspaced short palindromic repeats-FokI and piggyBac transposase technology.
Using a cell-free expression system we produced the p7 viroporin embedded into a lipid bilayer in a single-step manner. The protein quality was assessed using different methods. We examined the channel forming activity of p7 and verified its inhibition by 5-(N,N-Hexamethylene) amiloride (HMA).
View Article and Find Full Text PDFIn general, the method of choice to characterize the conductance properties of channel-forming bacterial porins is electrophysiology. Here, the classical method is to reconstitute single porins into planar lipid bilayers to derive functional information from the observed channel conductance. In addition to an estimated pore size, ion selectivity or transport properties in general are of importance.
View Article and Find Full Text PDFVoltage-gated sodium channels participate in the propagation of action potentials in excitable cells. Eukaryotic Navs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane segments (S1-S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore domain with the selectivity filter.
View Article and Find Full Text PDFWe have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1-688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD.
View Article and Find Full Text PDFThe potassium channel KcsA was heterologously expressed in a eukaryotic cell-free system. Both, the expression yields and functional analysis of the protein were reported. Qualitative and quantitative analyses of KcsA expression were performed by using (14)C-labeled leucine as one of the amino acids supplemented in the cell-free reaction mixture.
View Article and Find Full Text PDFWe report herein the design, total synthesis, and functional analysis of a novel artificial ion channel molecule, designated as dansylated polytheonamide mimic (3). The channel 3 was designed based on an exceptionally potent cytotoxin, polytheonamide B (1). Our strategy for the development of synthetic ion channels, which could be easily derivatized for various functions, involved two key features.
View Article and Find Full Text PDFIn mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels.
View Article and Find Full Text PDFMany voltage-gated ion channel (VGIC) superfamily members contain six-transmembrane segments in which the first four form a voltage-sensing domain (VSD) and the last two form the pore domain (PD). Studies of potassium channels from the VGIC superfamily together with identification of voltage-sensor only proteins have suggested that the VSD and the PD can fold independently. Whether such transmembrane modularity is common to other VGIC superfamily members has remained untested.
View Article and Find Full Text PDFA chip-based automated patch-clamp technique provides an attractive biophysical tool to quantify solute permeation through membrane channels. Proteo-giant unilamellar vesicles (proteo-GUVs) were used to form a stable lipid bilayer across a micrometer-sized hole. Because of the small size and hence low capacitance of the bilayer, single-channel recordings were achieved with very low background noise.
View Article and Find Full Text PDFConnexin26 (Cx26) is a member of the connexin family, the building blocks for gap junction intercellular channels. These dodecameric assemblies are involved in gap junction-mediated cell-cell communication allowing the passage of ions and small molecules between two neighboring cells. Mutations in Cx26 lead to the disruption of gap junction-mediated intercellular communication with consequences such as hearing loss and skin disorders.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2009
Ion channel dysfunction is known to underlie several acute and chronic disorders and, therefore, ion channels have gained increased interest as drug targets. During the past decade, ion channel screening platforms have surfaced that enable high throughput drug screening from a more functional perspective. These two factors taken together have further inspired the development of more refined screening platforms, such as the automated patch clamp platforms described in this article.
View Article and Find Full Text PDF