Deep eutectic electrolytes (DEEs) show promise for future electrochemical systems due to their adjustable buffer capacities. This study utilizes machine learning algorithms to analyse the carbon dioxide reduction reaction (CORR) in DEEs with a buffer capacity of approximately 10.21 mol/pH.
View Article and Find Full Text PDFThe removal of nitrogen compounds from fuel via the conventional method, which is hydrodenitrogenation, is costly and involves catalysts and energy-intensive conditions (600 K and 300 atm). Recently, ionic liquids (ILs) have emerged as a promising alternative solvent for the denitrogenation of fuel oil. However, certain ILs are expensive and challenging to synthesize, prompting the exploration of protic ionic liquid (PIL) substitutes, which offer similar advantages to ILs.
View Article and Find Full Text PDFThe conventional hydrodenitrogenation method is expensive and involves the use of catalysts and harsh procedures. In the last few years, ionic liquids (ILs) have gained attention as a promising alternative solvent for fuel oil extractive denitrogenation. In this work, the Conductor-like Screening Model for Real Solvents (COSMO-RS) was used to screen 173 potential ILs as solvents for fuel oil.
View Article and Find Full Text PDFCO is a low-cost monomer capable of promoting industrially scalable carboxylation reactions. Sustainable activation of CO through electroreduction process (ECOR) can be achieved in stable electrolyte media. This study synthesized and characterized novel diethyl ammonium chloride-diethanolamine bifunctional ionic deep eutectic electrolyte (DEACl-DEA), using diethanolamine (DEA) as hydrogen bond donors (HBD) and diethyl ammonium chloride (DEACl) as hydrogen bond acceptors (HBA).
View Article and Find Full Text PDFAn extension of the anisotropic united atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al.
View Article and Find Full Text PDF