A cost-effective IoT-based real-time data acquisition and analysis hardware system was developed to enhance the performance of the mobile harbor cranes using a combination of a cost-effective quality control monitoring sensor dashboard (proximity sensors, angle position sensor, weight sensor, vibration sensor, and wind sensor), embedded microcontroller (Arduino), and embedded computer (Raspberry Pi). Hardware was operated using a specially developed novel Quality Control and Data Acquisition Multiprocessing software (QC-DAS). The QC-DAS can automatically collect and save real-time data of the sensors in a large-capacity SD card, monitor the state of health of the hardware, and transmit the real-time data of the sensors and the working state of the crane to an IoT server.
View Article and Find Full Text PDFThis paper presents a novel framework for 3D face reconstruction from single 2D images and addresses critical limitations in existing methods. Our approach integrates modified adversarial neural networks with graph neural networks to achieve state-of-the-art performance. Key innovations include (1) a generator architecture based on Graph Convolutional Networks (GCNs) with a novel loss function and identity blocks, mitigating mode collapse and instability; (2) the integration of facial landmarks and a non-parametric efficient-net decoder for enhanced feature capture; and (3) a lightweight GCN-based discriminator for improved accuracy and stability.
View Article and Find Full Text PDFThis paper describes a revolutionary design paradigm for monitoring aquatic life. This unique methodology addresses issues such as limited memory, insufficient bandwidth, and excessive noise levels by combining two approaches to create a comprehensive predictive filtration system, as well as multiple-transfer route analysis. This work focuses on proposing a novel filtration learning approach for underwater sensor nodes.
View Article and Find Full Text PDFWith the increased use of automated systems, the Internet of Things (IoT), and sensors for real-time water quality monitoring, there is a greater requirement for the timely detection of unexpected values. Technical faults can introduce anomalies, and a large incoming data rate might make the manual detection of erroneous data difficult. This research introduces and applies a pioneering technology, Multivariate Multiple Convolutional Networks with Long Short-Term Memory (MCN-LSTM), to real-time water quality monitoring.
View Article and Find Full Text PDFThe latest version of ZigBee offers improvements in various aspects, including its low power consumption, flexibility, and cost-effective deployment. However, the challenges persist, as the upgraded protocol continues to suffer from a wide range of security weaknesses. Constrained wireless sensor network devices cannot use standard security protocols such as asymmetric cryptography mechanisms, which are resource-intensive and unsuitable for wireless sensor networks.
View Article and Find Full Text PDF