Background: Geographical disparities in mortality among Alzheimer`s disease (AD) patients have been reported and complex sociodemographic and environmental determinants of health (SEDH) may be contributing to this variation. Therefore, we aimed to explore high-risk SEDH factors possibly associated with all-cause mortality in AD across US counties using machine learning (ML) methods.
Methods: We performed a cross-sectional analysis of individuals ≥65 years with any underlying cause of death but with AD in the multiple causes of death certificate (ICD-10,G30) between 2016 and 2020.
Cardio-oncology mortality (COM) is a complex issue that is compounded by multiple factors that transcend a depth of socioeconomic, demographic, and environmental exposures. Although metrics and indexes of vulnerability have been associated with COM, advanced methods are required to account for the intricate intertwining of associations. This cross-sectional study utilized a novel approach that combined machine learning and epidemiology to identify high-risk sociodemographic and environmental factors linked to COM in United States counties.
View Article and Find Full Text PDF