Int J Comput Assist Radiol Surg
May 2024
Purpose: Deep learning-based analysis of micro-ultrasound images to detect cancerous lesions is a promising tool for improving prostate cancer (PCa) diagnosis. An ideal model should confidently identify cancer while responding with appropriate uncertainty when presented with out-of-distribution inputs that arise during deployment due to imaging artifacts and the biological heterogeneity of patients and prostatic tissue.
Methods: Using micro-ultrasound data from 693 patients across 5 clinical centers who underwent micro-ultrasound guided prostate biopsy, we train and evaluate convolutional neural network models for PCa detection.
Purpose: The standard of care for prostate cancer (PCa) diagnosis is the histopathological analysis of tissue samples obtained via transrectal ultrasound (TRUS) guided biopsy. Models built with deep neural networks (DNNs) hold the potential for direct PCa detection from TRUS, which allows targeted biopsy and subsequently enhances outcomes. Yet, there are ongoing challenges with training robust models, stemming from issues such as noisy labels, out-of-distribution (OOD) data, and limited labeled data.
View Article and Find Full Text PDF