Recovery of motor function after stroke appears to be related to the integrity of axonal connections in the corticospinal tract (CST) and corpus callosum, which may both be affected after cortical stroke. In the present study, we aimed to elucidate the relationship of changes in measures of the CST and transcallosal tract integrity, with the interhemispheric functional connectivity and sensorimotor performance after experimental cortical stroke. We conducted in vivo diffusion magnetic resonance imaging (MRI), resting-state functional MRI, and behavior testing in twenty-five male Sprague Dawley rats recovering from unilateral photothrombotic stroke in the sensorimotor cortex.
View Article and Find Full Text PDFTraumatic brain injury (TBI) can be defined as a disorder in the function of the brain after a bump, blow, or jolt to the head, or penetrating head injury. Mild traumatic brain injury (mTBI) can cause devastating effects, such as the initiation of long-term neurodegeneration in brain tissue. In the current study, the effects of mTBI were investigated on rat brain regions; cortex (Co) and corpus callosum (CC) after 24 h (subacute trauma) by Fourier transform infrared (FTIR) imaging and immunohistochemistry (IHC).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is the main cause of disability and mortality in individuals under the age of 45 years. Elucidation of the molecular and structural alterations in brain tissue due to TBI is crucial to understand secondary and long-term effects after traumatic brain injury, and to develop and apply the correct therapies. In the current study, the molecular effects of TBI were investigated in rat brain at 24 h and 1 month after the injury to determine acute and chronic effects, respectively by Fourier transform infrared imaging.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2021
Acute injury is one of the substantial stage post-traumatic brain injury (TBI) occurring at the moment of impact. Decreased metabolism, unregulated cerebral blood flow and direct tissue damage are triggered by acute injury. Understating the biochemical alterations associated with acute TBI is critical for brain plasticity and recovery.
View Article and Find Full Text PDFDespite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI.
View Article and Find Full Text PDFObjective: Brain damage, long-term disability and death are the dreadful consequences of ischemic stroke. It causes imbalance in the biochemical constituents that distorts the brain dynamics. Understanding the sub-cellular alterations associated with the stroke will contribute to deeper molecular understanding of brain plasticity and recovery.
View Article and Find Full Text PDFInteractions between programmed death-1 (PD-1) with its ligand PD-L1 on tumor cells can antagonize T cell responses. Inhibiting these interactions using immune checkpoint inhibitors has shown promise in cancer immunotherapy. MDA-MB-231 is a triple negative breast cancer cell line that expresses PD-L1.
View Article and Find Full Text PDFHistopathology and immunohistology remain the gold standard for breast cancer diagnostic. Yet, these approaches do not usually provide a sufficiently detailed characterization of the pathology. The purpose of this work is to demonstrate for the first time that elemental analysis and Fourier transform infrared spectroscopy microscopic examination of breast tissue sections can be merged into one dataset to provide a single set of markers based on both organic molecules and inorganic trace elements.
View Article and Find Full Text PDFStroke is the main cause of adult disability in the world, leaving more than half of the patients dependent on daily assistance. Understanding the post-stroke biochemical and molecular changes are critical for patient survival and stroke management. The aim of this work was to investigate the photo-thrombotic ischemic stroke in male rats with particular focus on biochemical and elemental changes in the primary stroke lesion in the somatosensory cortex and surrounding areas, including the corpus callosum.
View Article and Find Full Text PDFStability and molecular size of the DNA double helical structure were studied on an aqueous solution of DNA after exposure to high power doses of continuous wave ultrasound at frequency of 20 kHz. Thermal transition spectrophotometry (UV-melting), constant-field gel electrophoresis (CFGE), differential scanning calorimetry (DSC) and dielectric properties measurements were used to evaluate the ultrasound-induced changes in the DNA double helical structure. The thermal transition spectrophotometry (UV-melting) and differential scanning calorimetry (DSC) results showed that ultrasound power caused loss of DNA double helical structure and the DNA double strands melting temperature decreased as the ultrasound power increased, indicating a decrease in the stability of the double helical structure of DNA.
View Article and Find Full Text PDF