Objectives: Obese patients are at increased risk for CVD, which is the main cause of premature death and has been a major cause of disability and ill health in recent years. PTN, a natural dihydrochalcone flavonoid, has a variety of pharmacological characteristics. This article aimed to prepare PTN-NSLs to evaluate their anti-obesity activity.
View Article and Find Full Text PDFBackground: Though acrylic resins possess many useful properties, denture fracture is nevertheless a familiar issue.
Objective: This study aimed to determine the effect of low-percent recycled Zirconia nanoparticles as filler on the transverse strength, impact strength, surface hardness, water sorption, and solubility of resin using the sprinkle cold-curing technique.
Materials And Methods: Various formulae were prepared and mixed with PMMA (polymer) powder containing varying percentages (0.
Layered titanates with one-dimensional (1D) shapes have been an important class of nanomaterials due to their combination of 1D and 2D fascinating properties. Among many layered titanates, lepidocrocite-type layered titanates have significant advantages such as superior intercalation and exfoliation properties, while the synthesis of the 1D-shape forms is still challenging. Here, we report on a facile one-pot hydrothermal conversion of a lepidocrocite-type layered titanate into the corresponding nanowire-shape form.
View Article and Find Full Text PDFOrdered mesoporous nitrogen-doped carbon (OMNC) materials are considered as the most promising material for supercapacitors. In this study, a highly ordered two-dimensional (2D) hexagonal mesostructured polymer was synthesized through a facile assembly of triblock polymer micelles and phenol-melamine/formaldehyde resin via an organic-organic assembly process in aqueous solution. After calcination, the novel OMNC materials with 2D hexagonal mesostructures were obtained.
View Article and Find Full Text PDFInt J Biol Macromol
September 2017
Cobalt ferrite nanoparticles (CF), titanate nanotubes (T), alginate (G) and their nanocomposite microparticles (CF/G and T/G) were prepared and used for efficient removal of Cu, Fe and As ions from water. The nanocomposites were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), FTIR and vibrating sample magnetometer (VSM). In addition, the effects of pH, contact time, adsorbent weight and heavy metal ion concentration on the removal efficiency were investigated.
View Article and Find Full Text PDF