Publications by authors named "Mohamed H Alhosani"

Condensation widely exists in nature and industry, and its performance heavily relies on the efficiency of condensate removal. Recent advances in micro-/nanoscale surface engineering enable condensing droplet removal from solid surfaces without extra energy cost, but it is still challenging to achieve passive transport of microdroplets over long distances along horizontal surfaces. The mobility of these condensate droplets can be enhanced by lubricant oil infusion on flat surfaces and frequent coalescence, which lead to fast growth but random motion of droplets.

View Article and Find Full Text PDF

Understanding the dynamics of microscale liquid propagation in micropillar arrays can lead to significant enhancement in macroscopic propagation modeling. Such a phenomenon is fairly complicated, and a fundamental understanding is lacking. The aim here is to estimate three main parameters in liquid propagation, capillary pressure, average liquid height, and contact angle on the pillar side, through modeling and experimental validation.

View Article and Find Full Text PDF

Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging.

View Article and Find Full Text PDF

Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation.

View Article and Find Full Text PDF