Chlorophyll content reflects plants' photosynthetic capacity, growth stage, and nitrogen status and is, therefore, of significant importance in precision agriculture. This study aims to develop a spectral and color vegetation indices-based model to estimate the chlorophyll content in aquaponically grown lettuce. A completely open-source automated machine learning (AutoML) framework (EvalML) was employed to develop the prediction models.
View Article and Find Full Text PDFThe most significant aspect of promoting greenhouse productivity is the timely monitoring of disease spores and applying proactive control measures. This paper introduces a method to classify spores of airborne disease in greenhouse crops by using fingerprint characteristics of diffraction-polarized images and machine learning. Initially, a diffraction-polarization imaging system was established, and the diffraction fingerprint images of disease spores were taken in polarization directions of 0°, 45°, 90° and 135°.
View Article and Find Full Text PDFNear-infrared (NIR) hyperspectroscopy becomes an emerging nondestructive sensing technology for inspection of crop seeds. A large spectral dataset of more than 140,000 wheat kernels in 30 varieties was prepared for classification. Feature selection is a critical segment in large spectral data analysis.
View Article and Find Full Text PDF