In this theoretical investigation, we delve into the significant effects of donor impurity position within core/shell quantum dot structures: type I (CdTe/ZnS) and type II (CdTe/CdS). The donor impurity's precise location within both the core and the shell regions is explored to unveil its profound influence on the electronic properties of these nanostructures. Our study investigates the diamagnetic susceptibility and binding energy of the donor impurity while considering the presence of an external magnetic field.
View Article and Find Full Text PDFThis study investigates the effect of quantum size and an external magnetic field on the optoelectronic properties of a cylindrical AlxGa1-xAs/GaAs-based core/shell nanowire. We used the one-band effective mass model to describe the Hamiltonian of an interacting electron-donor impurity system and employed two numerical methods to calculate the ground state energies: the variational and finite element methods. With the finite confinement barrier at the interface between the core and the shell, the cylindrical symmetry of the system revealed proper transcendental equations, leading to the concept of the threshold core radius.
View Article and Find Full Text PDFThe kesterite Cu2ZnGeS4 (CZGS) has recently gained significant interest in the scientific community. In this work, we investigated the thermodynamic and thermoelectric properties of CZGS by employing the first-principals calculation in association with the quasi-harmonic approximation, Boltzmann transport theory, deformation potential theory, and slack model. We obtained a bandgap of 2.
View Article and Find Full Text PDFFollowing the chronological stages of calculations imposed by the WIEN2K code, we have performed a series of density functional theory calculations, from which we were able to study the effect of strain on the kesterite structures for two quaternary semiconductor compounds Cu2ZnGeS4 and Cu2ZnGeSe4. Remarkable changes were found in the electronic and optical properties of these two materials during the application of biaxial strain. Indeed, the band gap energy of both materials decreases from the equilibrium state, and the applied strain is more pronounced.
View Article and Find Full Text PDFWe have studied the parallel and perpendicular electric field effects on the system of SiGe prolate and oblate quantum dots numerically, taking into account the wetting layer and quantum dot size effects. Using the effective-mass approximation in the two bands model, we computationally calculated the extensive variation of dipole matrix (DM) elements, bandgap and non-linear optical properties, including absorption coefficients, refractive index changes, second harmonic generation and third harmonic generation as a function of the electric field, wetting layer size and the size of the quantum dot. The redshift is observed for the non-linear optical properties with the increasing electric field and an increase in wetting layer thickness.
View Article and Find Full Text PDFSolar cells that are based on the implementation of quantum dots in the intrinsic region, so-called intermediate band solar cells (IBSCs), are among the most widely used concepts nowadays for achieving high solar conversion efficiency. The principal characteristics of such solar cells relate to their ability to absorb low energy photons to excite electrons through the intermediate band, allowing for conversion efficiency exceeding the limit of Shockley-Queisser. IBSCs are generating considerable interest in terms of performance and environmental friendliness.
View Article and Find Full Text PDF