A highly aggressive strain (CMN14-5-1) of bacteria, which causes Goss's wilt in corn, induced severe symptoms in a susceptible corn line (CO447), resulting in water-soaked lesions followed by necrosis within a few days. A tolerant line (CO450) inoculated with the same strain exhibited only mild symptoms such as chlorosis, freckling, and necrosis that did not progress after the first six days following infection. Both lesion length and disease severity were measured using the area under the disease progression curve (AUDPC), and significant differences were found between treatments.
View Article and Find Full Text PDFPolyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms.
View Article and Find Full Text PDFPlants are frequently exposed to simultaneous abiotic and biotic stresses, a condition that induces complex responses, negatively affects crop productivity and is becoming more exacerbated with current climate change. In this study, we investigated the effects of individual and combined heat and osmotic stresses on Arabidopsis susceptibility to the biotrophic pathogen pv. () and the necrotrophic pathogen ().
View Article and Find Full Text PDFlectin 2 (CCL2) is a fucoside-binding lectin from the basidiomycete that is toxic to the bacterivorous nematode as well as animal-parasitic and fungivorous nematodes. We expressed in Arabidopsis to assess its protective potential toward plant-parasitic nematodes. Our results demonstrate that expression of enhances host resistance against the cyst nematode .
View Article and Find Full Text PDFBackground: Textile industry represents one prevalent activity worldwide, generating large amounts of highly contaminated and rich in azo dyes wastewater, with severe effects on natural ecosystems and public health. However, an effective and environmentally friendly treatment method has not yet been implemented, while concurrently, the increasing demand of modern societies for adequate and sustainable energy supply still remains a global challenge. Under this scope, the purpose of the present study was to isolate promising species of yeasts inhabiting wood-feeding termite guts, for combined azo dyes and textile wastewater bioremediation, along with biodiesel production.
View Article and Find Full Text PDFLignocellulose biodegradation is limited because of its recalcitrant structure particularly when polluted by toxic and carcinogenic compounds such as creosote oil (CRO). As far as we know, this might be the first report that explores the biodegradation of creosote treated wood (CTW) to serve biomethane production. Two novel CTW-degrading microbial consortia, designated as CTW-1 and CTW-2, were screened and constructed to enhance methane production from CRO-treated pine sawdust.
View Article and Find Full Text PDFIn plants, pathogen attack can induce an immune response known as systemic acquired resistance that protects against a broad spectrum of pathogens. In the search for safer agrochemicals, silica nanoparticles (SiO NPs; food additive E551) have recently been proposed as a new tool. However, initial results are controversial, and the molecular mechanisms of SiO NP-induced disease resistance are unknown.
View Article and Find Full Text PDFBiofilm formation and hyphal growth are considered to be the most serious virulence factors of Candida species in blood causing candidemia infections, which are difficult to treat due to the spread of resistant Candida isolates to most antifungal drugs. Therefore, in this study, we investigated the effect of different types and concentrations of selected macroalgal extracts from Cladostephus spongiosus (Phaeophyta), Laurencia papillosa (Rhodophyta), and Codium arabicum (Chlorophyta) in inhibiting those virulence factors of the isolated Candida. Acetone extract of C.
View Article and Find Full Text PDFSystemic acquired resistance (SAR) is a form of broad-spectrum disease resistance that is induced in response to primary infection and that protects uninfected portions of the plant against secondary infections by related or unrelated pathogens. SAR is associated with an increase in chemical signals that operate in a collective manner to confer protection against secondary infections. These include, the phytohormone salicylic acid (SA), glycerol-3-phosphate (G3P), azelaic acid (AzA) and more recently identified signals nitric oxide (NO) and reactive oxygen species (ROS).
View Article and Find Full Text PDFSystemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner.
View Article and Find Full Text PDF