The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice.
View Article and Find Full Text PDFCD4 FOXP3 Tregs are currently explored to develop cell therapies against immune-mediated disorders, with an increasing focus on antigen receptor-engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE.
View Article and Find Full Text PDFNeisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels.
View Article and Find Full Text PDFNumerous studies have demonstrated the role of immune cells, in particular macrophages, in central nervous system (CNS) pathologies. There are two main macrophage populations in the CNS: (i) the microglia, which are the resident macrophages of the CNS and are derived from yolk sac progenitors during embryogenesis, and (ii) the monocyte-derived macrophages (MDM), which can infiltrate the CNS during disease and are derived from bone marrow progenitors. The roles of each macrophage subpopulation differ depending on the pathology being studied.
View Article and Find Full Text PDFOne major challenge in multiple sclerosis is to understand the cellular and molecular mechanisms leading to disease severity progression. The recently demonstrated correlation between disease severity and remyelination emphasizes the importance of identifying factors leading to a favourable outcome. Why remyelination fails or succeeds in multiple sclerosis patients remains largely unknown, mainly because remyelination has never been studied within a humanized pathological context that would recapitulate major events in plaque formation such as infiltration of inflammatory cells.
View Article and Find Full Text PDFIL-17-secreting CD8(+) T cells (Tc17 cells) have been implicated in immunity to infections, cancer, and autoimmune diseases. Thus far, studies on Tc17 cells have primarily investigated their development from naïve precursors, while the biology of committed Tc17 cells has been less characterized, in particular during the effector phase of immune responses. IL-27 is an important regulator of inflammation through the induction of regulatory Tr1 cells, as well as a suppressor of Th17-cell development.
View Article and Find Full Text PDFMuscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses.
View Article and Find Full Text PDFInterleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) require exposure to IL-23 to become encephalitogenic, but the mechanism by which IL-23 promotes their pathogenicity is not known. Here we found that IL-23 induced production of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) in T(H)17 cells and that GM-CSF had an essential role in their encephalitogenicity. Our findings identify a chief mechanism that underlies the important role of IL-23 in autoimmune diseases.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
June 2010
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune demyelinating diseases of the central nervous system (CNS). Interferon-gamma-producing Th1 and interleukin-17-producing Th17 CD4(+) T helper (Th) cells mediate disease pathogenesis in EAE and likely in MS as well. However, the relative contribution of each Th subset to autoimmune processes in the CNS remains unclear.
View Article and Find Full Text PDFIL-27 counters the effect of TGF-beta+IL-6 on naive CD4(+) T cells, resulting in near complete inhibition of de novo Th17 development. In contrast, little is known about the effect of IL-27 on already differentiated Th17 cells. A better understanding of how IL-27 regulates these cells is needed to evaluate the therapeutic potential of IL-27 in Th17 cells-associated diseases.
View Article and Find Full Text PDFIL-17-producing CD8(+) T cells (Tc17) appear to play a role in a range of conditions, such as autoimmunity and cancer. Thus far, Tc17 cells have been only marginally studied, resulting in a paucity of data on their biology and function. We demonstrate that Tc17 and Th17 cells share similar developmental characteristics, including the previously unknown promoting effect of IL-21 on Tc17 cell differentiation and IL-23-dependent expression of IL-22.
View Article and Find Full Text PDFExcessive inflammation occurs during infection and autoimmunity in mice lacking the alpha-subunit of the interleukin 27 (IL-27) receptor. The molecular mechanisms underlying this increased inflammation are incompletely understood. Here we report that IL-27 upregulated IL-10 in effector T cells that produced interferon-gamma and expressed the transcription factor T-bet but did not express the transcription factor Foxp3.
View Article and Find Full Text PDFWe reduced EAE severity by using two anti-allergic drugs. A control group of mice received i.p.
View Article and Find Full Text PDFWe sequentially analyzed the serum IgG response against normal mouse brain during experimental autoimmune encephalomyelitis in SJL/J mice injected with CFA, Bordetella pertussis toxin (BPT) and proteolipid protein 139-151 peptide, compared with mice that received CFA and BPT or were uninjected. Dynamic changes were observed from day 0 to day 28 in the 3 groups. Six highly discriminant antigenic bands (kappa=0.
View Article and Find Full Text PDFAnimal models of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating diseases which comprise a heterogeneous group of disorders that affect the peripheral and central nervous systems. EAE presents close similarities with multiple sclerosis (MS), a chronic inflammatory disease affecting central nervous system (CNS) white matter. Many studies have shown EAE to be a particularly useful animal model for the understanding of both the mechanisms of immune-mediated CNS pathology and the progressive clinical course of multiple sclerosis.
View Article and Find Full Text PDFWe described previously a CTL clone able to lyse the autologous carcinoma cell line IGR-Heu after specific recognition of an HLA-A2/mutated alpha-actinin-4 peptide complex. Here, we used IGR-Heu, cultured either as standard two-dimensional monolayers or as three-dimensional spheroids, to further analyze the influence of target architecture on CTL reactivity. Interestingly, we found that changes in the tumor structure from two- to three-dimensional induced a dramatic decrease in its capacity to activate autologous CTL, as measured by IFN-gamma and tumor necrosis factor-alpha secretion.
View Article and Find Full Text PDF