This research introduces a new technique to control constrained nonlinear systems, named Lyapunov-based neural network model predictive control using a metaheuristic optimization approach. This controller utilizes a feedforward neural network model as a prediction model and employs the driving training based optimization algorithm to resolve the related constrained optimization problem. The proposed controller relies on the simplicity and accuracy of the feedforward neural network model and the convergence speed of the driving training based optimization algorithm.
View Article and Find Full Text PDFEvaluating the risk associated with operations is an essential element of safe planning and an essential prerequisite in mobile robotics. This issue is very broad, with numerous definitions emerging in the recent literature adapting different application scenarios and leading to different algorithmic approaches. In this review, we will investigate how the state-of-the-art approaches define the traversability risk, particularly for mobile robots, whereby we classify existing risk-aware navigation algorithms according to their characterization of risk.
View Article and Find Full Text PDFThe basic functions of an autonomous vehicle typically involve navigating from one point to another in the world by following a reference path and analyzing the traversability along this path to avoid potential obstacles. What happens when the vehicle is subject to uncertainties in its localization? All its capabilities, whether path following or obstacle avoidance, are affected by this uncertainty, and stopping the vehicle becomes the safest solution. In this work, we propose a framework that optimally combines path following and obstacle avoidance while keeping these two objectives independent, ensuring that the limitations of one do not affect the other.
View Article and Find Full Text PDF