Publications by authors named "Mohamed Ayari"

Brain tumors present a significant global health challenge, and their early detection and accurate classification are crucial for effective treatment strategies. This study presents a novel approach combining a lightweight parallel depthwise separable convolutional neural network (PDSCNN) and a hybrid ridge regression extreme learning machine (RRELM) for accurately classifying four types of brain tumors (glioma, meningioma, no tumor, and pituitary) based on MRI images. The proposed approach enhances the visibility and clarity of tumor features in MRI images by employing contrast-limited adaptive histogram equalization (CLAHE).

View Article and Find Full Text PDF

GI abnormalities significantly increase mortality rates and impose considerable strain on healthcare systems, underscoring the essential requirement for rapid detection, precise diagnosis, and efficient strategic treatment. To develop a CAD system, this study aims to automatically classify GI disorders utilizing various deep learning methodologies. The proposed system features a three-stage lightweight architecture, consisting of a feature extractor using PSE-CNN, a feature selector employing PCA, and a classifier based on DELM.

View Article and Find Full Text PDF

Plant diseases significantly impact crop productivity and quality, posing a serious threat to global agriculture. The process of identifying and categorizing these diseases is often time-consuming and prone to errors. This research addresses this issue by employing a convolutional neural network and support vector machine (CNN-SVM) hybrid model to classify diseases in four economically important crops: strawberries, peaches, cherries, and soybeans.

View Article and Find Full Text PDF

Due to their simplicity of implementation and compliance with the encryption issue, chaotic models are often utilized in picture encryption applications. Despite having many benefits, this approach still has a crucial space issue that makes encryption algorithms based on it susceptible to brute-force assaults. This research's proposed novel picture encryption technique has a vast key space and great key sensitivity.

View Article and Find Full Text PDF

The human liver exhibits variable characteristics and anatomical information, which is often ambiguous in radiological images. Machine learning can be of great assistance in automatically segmenting the liver in radiological images, which can be further processed for computer-aided diagnosis. Magnetic resonance imaging (MRI) is preferred by clinicians for liver pathology diagnosis over volumetric abdominal computerized tomography (CT) scans, due to their superior representation of soft tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Mulberry leaves are crucial for silkworm cultivation, but diseases affecting them lead to reduced silk production, prompting the need for efficient identification methods.
  • Computer vision techniques, specifically a novel lightweight model called PDS-CNN, were developed to accurately classify common leaf diseases, outperforming existing deep learning models with an accuracy of around 95-96% while being smaller and less complex.
  • The model's explainability was enhanced using SHAP, allowing sericulture experts to easily validate its predictions, thus providing a practical tool for better management of mulberry leaf diseases in sericulture.
View Article and Find Full Text PDF

Colorectal polyps in the colon or rectum are precancerous growths that can lead to a more severe disease called colorectal cancer. Accurate segmentation of polyps using medical imaging data is essential for effective diagnosis. However, manual segmentation by endoscopists can be time-consuming, error-prone, and expensive, leading to a high rate of missed anomalies.

View Article and Find Full Text PDF

Every one of us has a unique manner of communicating to explore the world, and such communication helps to interpret life. Sign language is the popular language of communication for hearing and speech-disabled people. When a sign language user interacts with a non-sign language user, it becomes difficult for a signer to express themselves to another person.

View Article and Find Full Text PDF

This study experimentally investigates the effect of green polymeric nanoparticles on the interfacial tension (IFT) and wettability of carbonate reservoirs to effectively change the enhanced oil recovery (EOR) parameters. This experimental study compares the performance of xanthan/magnetite/SiO nanocomposites (NC) and several green materials, i.e.

View Article and Find Full Text PDF

With an expectation of an increased number of revision surgeries and patients receiving orthopedic implants in the coming years, the focus of joint replacement research needs to be on improving the mechanical properties of implants. Head-stem trunnion fixation provides superior load support and implant stability. Fretting wear is formed at the trunnion because of the dynamic load activities of patients, and this eventually causes the total hip implant system to fail.

View Article and Find Full Text PDF

Computerized brain tumor classification from the reconstructed microwave brain (RMB) images is important for the examination and observation of the development of brain disease. In this paper, an eight-layered lightweight classifier model called microwave brain image network (MBINet) using a self-organized operational neural network (Self-ONN) is proposed to classify the reconstructed microwave brain (RMB) images into six classes. Initially, an experimental antenna sensor-based microwave brain imaging (SMBI) system was implemented, and RMB images were collected to create an image dataset.

View Article and Find Full Text PDF

This study constructs a machine learning method to simultaneously analyze the thermodynamic behavior of many polymer-drug systems. The solubility temperature of Acetaminophen, Celecoxib, Chloramphenicol, D-Mannitol, Felodipine, Ibuprofen, Ibuprofen Sodium, Indomethacin, Itraconazole, Naproxen, Nifedipine, Paracetamol, Sulfadiazine, Sulfadimidine, Sulfamerazine, and Sulfathiazole in 1,3-bis[2-pyrrolidone-1-yl] butane, Polyvinyl Acetate, Polyvinylpyrrolidone (PVP), PVP K12, PVP K15, PVP K17, PVP K25, PVP/VA, PVP/VA 335, PVP/VA 535, PVP/VA 635, PVP/VA 735, Soluplus analyzes from a modeling perspective. The least-squares support vector regression (LS-SVR) designs to approximate the solubility temperature of drugs in polymers from polymer and drug types and drug loading in polymers.

View Article and Find Full Text PDF

Cardiovascular diseases are one of the most severe causes of mortality, annually taking a heavy toll on lives worldwide. Continuous monitoring of blood pressure seems to be the most viable option, but this demands an invasive process, introducing several layers of complexities and reliability concerns due to non-invasive techniques not being accurate. This motivates us to develop a method to estimate the continuous arterial blood pressure (ABP) waveform through a non-invasive approach using Photoplethysmogram (PPG) signals.

View Article and Find Full Text PDF

Respiratory ailments are a very serious health issue and can be life-threatening, especially for patients with COVID. Respiration rate (RR) is a very important vital health indicator for patients. Any abnormality in this metric indicates a deterioration in health.

View Article and Find Full Text PDF

An intelligent insole system may monitor the individual's foot pressure and temperature in real-time from the comfort of their home, which can help capture foot problems in their earliest stages. Constant monitoring for foot complications is essential to avoid potentially devastating outcomes from common diseases such as diabetes mellitus. Inspired by those goals, the authors of this work propose a full design for a wearable insole that can detect both plantar pressure and temperature using off-the-shelf sensors.

View Article and Find Full Text PDF

Synthesizing micro-/nano-sized pharmaceutical compounds with an appropriate size distribution is a method often followed to enhance drug delivery and reduce side effects. Supercritical CO (carbon dioxide) is a well-known solvent utilized in the pharmaceutical synthesis process. Reliable knowledge of a drug's solubility in supercritical CO is necessary for feasible study, modeling, design, optimization, and control of such a process.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most prevalent diseases in the world, and is correlated to a high index of mortality. One of its major complications is diabetic foot, leading to plantar ulcers, amputation, and death. Several studies report that a thermogram helps to detect changes in the plantar temperature of the foot, which may lead to a higher risk of ulceration.

View Article and Find Full Text PDF

Liver and liver tumor segmentation from 3D volumetric images has been an active research area in the medical image processing domain for the last few decades. The existence of other organs such as the heart, spleen, stomach, and kidneys complicate liver segmentation and tumor identification task since these organs share identical properties in terms of shape, texture, and intensity values. Many automatic and semi-automatic techniques have been presented in recent years, in an attempt to establish a system for the reliable diagnosis and detection of liver illnesses, specifically liver tumors.

View Article and Find Full Text PDF

Problem-Since the outbreak of the COVID-19 pandemic, mass testing has become essential to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-19 patients display no physical symptoms whatsoever. Therefore, it is unlikely that these patients will undergo COVID-19 testing, which increases their chances of unintentionally spreading the virus.

View Article and Find Full Text PDF

Diabetes mellitus (DM) can lead to plantar ulcers, amputation and death. Plantar foot thermogram images acquired using an infrared camera have been shown to detect changes in temperature distribution associated with a higher risk of foot ulceration. Machine learning approaches applied to such infrared images may have utility in the early diagnosis of diabetic foot complications.

View Article and Find Full Text PDF

Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose.

View Article and Find Full Text PDF

Biodegradable polymers have recently found significant applications in pharmaceutics processing and drug release/delivery. Composites based on poly (L-lactic acid) (PLLA) have been suggested to enhance the crystallization rate and relative crystallinity of pure PLLA polymers. Despite the large amount of experimental research that has taken place to date, the theoretical aspects of relative crystallinity have not been comprehensively investigated.

View Article and Find Full Text PDF

MRI images are visually inspected by domain experts for the analysis and quantification of the tumorous tissues. Due to the large volumetric data, manual reporting on the images is subjective, cumbersome, and error prone. To address these problems, automatic image analysis tools are employed for tumor segmentation and other subsequent statistical analysis.

View Article and Find Full Text PDF

This study describes the synthesis and evaluation of different imprinted hydrogels using ribavirin as template molecule. Ribavirin serves as a model molecule because it possesses a broad-spectrum antiviral effect against RNA viruses, which are expected as emerging viruses. The choice of monomers enables to stabilize the pre-polymerization complex and to synthesize biocompatible polymers.

View Article and Find Full Text PDF

Detecting COVID-19 at an early stage is essential to reduce the mortality risk of the patients. In this study, a cascaded system is proposed to segment the lung, detect, localize, and quantify COVID-19 infections from computed tomography images. An extensive set of experiments were performed using Encoder-Decoder Convolutional Neural Networks (ED-CNNs), UNet, and Feature Pyramid Network (FPN), with different backbone (encoder) structures using the variants of DenseNet and ResNet.

View Article and Find Full Text PDF