Background/objectives: Chest disease identification for Tuberculosis and Pneumonia diseases presents diagnostic challenges due to overlapping radiographic features and the limited availability of expert radiologists, especially in developing countries. The present study aims to address these challenges by developing a Computer-Aided Diagnosis (CAD) system to provide consistent and objective analyses of chest X-ray images, thereby reducing potential human error. By leveraging the complementary strengths of convolutional neural networks (CNNs) and vision transformers (ViTs), we propose a hybrid model for the accurate detection of Tuberculosis and for distinguishing between Tuberculosis and Pneumonia.
View Article and Find Full Text PDFPurpose: X-ray images are viewed as a vital component in emergency diagnosis. They are often used by deep learning applications for disease prediction, especially for thoracic pathologies. Pneumonia, a fatal thoracic disease induced by bacteria or viruses, generates a pleural effusion where fluids are accumulated inside lungs, leading to breathing difficulty.
View Article and Find Full Text PDF