The performance of a biofilm system, single-stage flexible fibre biofilm reactor (SS-FFBR) treating milk processing wastewater (MPW) is evaluated under various process and operational conditions. The system behavior is analyzed with different biological and physical parameters. Results show that the high COD removal efficiency of 95% is obtained at a low COD concentration of 809 mg/L.
View Article and Find Full Text PDFStructural elements for applications in maritime environments, especially offshore installations, are subjected to various stresses, such as mechanical loads caused by wind or waves and corrosive attacks, e.g., by seawater, mist and weather.
View Article and Find Full Text PDFThis study was focused on the capacity investigation of a novel multistage flexible fibre biofilm reactor (MS-FFBR) to treat milk processing wastewater (MPW) with high organic loading (OLR). The MS-FFBR performance was evaluated at four intermediate stages separately, and also the final effluent quality of the overall system with an influent chemical oxygen demand (COD) ranged from 1500 ± 20 to 6000 ± 50 mg/L and hydraulic retention times (HRTs) of 8, 12, and 16 h. By comparting the bioreactors into the four stages effectively enhanced the bioreactor's performance.
View Article and Find Full Text PDFIn this study, a sequencing batch flexible fibre biofilm reactor (SB-FFBR) is used for efficient and cost-effective treatment of milk processing wastewater (MPW). The SB-FFBR, modified type of a typical sequencing batch reactor (SBR), is made up of eight bundles of flexible fibre as a supporting media for microorganisms'growth. The working volume and the cycle length of the bioreactor are 8 L and 24 h, respectively.
View Article and Find Full Text PDF