Publications by authors named "Mohamed A K Abdelhalim"

Background: Recently, use of nanotechnology in biomedical applications such as drug delivery and diagnostic and therapeutic tools has increased greatly. This study evaluated gold nanoparticle (GNPs)-induced nephrotoxic effects in rats in vivo, and examined protective effects of alpha-lipoic acid (α-Lip) and Vitamin E (Vit E) against nephrotoxicity, lipid peroxidation, and inflammatory kidney damage induced by GNPs.

Materials And Methods: Twenty-four male Wistar-Kyoto rats (220-240 g, 12 weeks old) were dosed with 50 μL of 10 nm GNPs administered intraperitoneally with or without 200 mg/kg/day Vit E or 200 mg/kg/day α-Lip.

View Article and Find Full Text PDF

Objective: The objective of this study was to verify and confirm the oxidative-mediated hepatotoxicity, inflammatory liver damage, and oxidative stress induced by intraperitoneal administration of gold nanoparticles (GNPs) in vivo; characterize the effect of different natural antioxidants on these hazardous changes; and finally choose the most powerful antioxidant among these different natural antioxidants.

Methods: Ten-nanometer GNPs were dissolved in aqueous solution of 0.01% concentration.

View Article and Find Full Text PDF

Introduction: This study aimed to evaluate the nephrotoxicity caused by gold nanoparticles (GNPs) and investigate the potential roles of quercetin (Qur) and arginine (Arg) in mitigating the inflammatory kidney damage and dysfunction and inhibiting the toxicity induced by GNPs in rats.

Methods: Kidney function was assessed using various serum biomarkers, including blood urea nitrogen (BUN), uric acid (URIC), and creatinine (CR), while toxicity was evaluated by measuring the biomarkers glutathione (GSH) and malondialdehyde (MDA) in kidney tissues.

Results: Administration of GNPs to the rats severely affected the serum kidney biomarkers, as confirmed by the notable increases in BUN, URIC, and CR.

View Article and Find Full Text PDF

Introduction: Melanin pigments are produced by melanocytes and are believed to act as antioxidants based on the belief that melanin can suppress electronically stirred states and scavenge the free radicals.

Materials And Methods: The study was aimed to verify and prove the toxicity induced by administration of gold nanoparticles (GNPs) and to characterize the role of melanin as an antioxidant against inflammatory liver damage, oxidative stress, and lipid peroxidation induced intraperitoneally by GNPs in vivo.

Results: The findings from this study confirmed that administration of GNPs intraperitoneally caused liver damage in addition to producing oxidative stress and fatty acid peroxidation.

View Article and Find Full Text PDF

Background: The aim of the study was to confirm the hepatotoxicity induced by small-sized gold nanoparticles (GNPs) and evaluate the role of quercetin (Qur) and arginine (Arg) against hepatotoxicity caused by GNPs.

Methods: Twenty-five healthy male Wistar-Kyoto rats were used. GNPs were administered intraperitoneally to these rats at the dose of 50 μL for seven consecutive days.

View Article and Find Full Text PDF

The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo.

View Article and Find Full Text PDF

The biological pigment melanin is present in most of the biological systems. It manifests a host of biological and pharmacological properties. Its role as a molecule with special properties and functions affecting general health, including photoprotective and immunological action, are well recognized.

View Article and Find Full Text PDF

This study aimed to evaluate the role of zinc (Zn)-supplemented with high cholesterol diet (HCD) on the serum and whole blood rheological properties of rabbits fed a HCD. Twenty-four New Zealand white rabbits were divided into three groups. The HCD group was fed a diet with 1.

View Article and Find Full Text PDF

The synthesis and characterization of glass systems were carried out using prepared nanocrystals injected into a glass matrix as a thermoluminescence (TL) activator using the melt-quenching method. Sample 1 was prepared as [40P O 50BaO:2.5MgO, 2.

View Article and Find Full Text PDF

The blood serum rheological properties open the door to find suitable radio-protectors and convenient therapy for many cases of radiation exposure. The present study aimed to investigate the rheological properties of rat blood serum at wide range of shear rates after whole body irradiation with different gamma radiation doses in vivo. Healthy male rats were divided into five groups; one control group and 4 irradiated groups.

View Article and Find Full Text PDF

The blood rheological properties serve as an important indicator for the early detection of many diseases. This study aimed to investigate the influence of zinc (Zn) on blood serum of cadmium (Cd) intoxication-treated male rats through the rheological properties. The rheological parameters were measured in serum of control, Cd, and Cd+Zn groups at wide range of shear rates (225-1875 s(-1)).

View Article and Find Full Text PDF

Background: In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control.

Methods: The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.

View Article and Find Full Text PDF

Unlabelled: Nanoparticles (NPs) offer a great possibility for biomedical application, not only to deliver pharmaceutics, but also to be used as novel diagnostic and therapeutic approaches. Currently, there are no data available regarding to what extent the degree of the toxicity and the accumulation of gold nanoparticles (GNPs) are present in in vivo administration. This study aimed to address the GNP size and exposure duration effect on the liver and kidney function of rats: in vivo.

View Article and Find Full Text PDF

We studied the effect of gold nanoparticles (NPs) on oxidative stress markers including reduced glutathione (GSH) and malondialdehyde (MDA) in different organs of rats. Adult male Wistar-Kyoto rats were randomly divided into 3 groups of 5 animals each. One group served as control and received vehicle only.

View Article and Find Full Text PDF

Background: The gold nanoparticles (GNPs) have potential applications in cancer diagnosis and therapy. In an attempt to characterise the potential toxicity or hazards of GNPs as a therapeutic or diagnostic tool, the fluorescence spectra in several rat organs in vivo were measured after intraperitoneal administration of GNPs.

Methods: The experimental rats were divided into control and six groups (G1A, G1B, G2A, G2B, G3A, and G3B; G1: 20 nm; G2: 10 nm; G3: 50 nm; A: infusion of GNPs for 3 days; B: infusion of GNPs for 7 days).

View Article and Find Full Text PDF

The data on the biocompatibility of naked gold nanoparticles (GNPs) are scarce, and their interpretation is controversial. We studied the acute (1 day) and subchronic (5 days) effects of GNPs (10 and 50 nm diameter) on expression of interleukin-1 beta (IL-1 β ), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF- α ) in the liver and kidneys of rats. In the liver, the GNPs of both sizes (10 and 50 nm) significantly increased the cytokines gene expression on day 1 which was subsided on day 5; the GNPs of 50 nm size produced more severe inflammatory response as compared to smaller sized GNPs.

View Article and Find Full Text PDF

Background: Gold nanoparticles (AuNPs) are finding increased use in therapeutics and imaging. However, their toxic effects still remain to be elucidated. Therefore this study was undertaken to study the biochemical effects of AuNPs on rat brain and identify potential biomarkers of AuNP toxicity.

View Article and Find Full Text PDF

Background: Nanoparticles (NPs) can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. Since the properties of NPs differ from that of their bulk materials, they are being increasingly exploited for medical uses and other industrial applications.

View Article and Find Full Text PDF

Background: Rheological analysis can be employed as a sensitive tool in predicting the physical properties of gold nanoparticles (GNPs). Understanding the rheological properties of GNPs can help to develop a better therapeutic cancer product, since these physical properties often link material formulation and processing stages with the ultimate end use. The rheological properties of GNPs have not been previously documented.

View Article and Find Full Text PDF

Background: Despite significant research efforts on cancer therapy, diagnostics and imaging, many challenges remain unsolved. There are many unknown details regarding the interaction of nanoparticles (NPs) and biological systems. The structure and properties of gold nanoparticles (GNPs) make them useful for a wide array of biological applications.

View Article and Find Full Text PDF

Background: Gold nanoparticles (GNPs) have found themselves useful for diagnostic, drug delivery and biomedicine applications, but one of the important concerns is about their safety in clinical applications. Nanoparticle size has been shown to be an extremely important parameter affecting the nanoparticle uptake and cellular internalization. The rheological properties assume to be very important as it affects the pressure drop and hence the pumping power when nano-fluids are circulated in a closed loop.

View Article and Find Full Text PDF

Background: Current research focuses on cancer therapy, diagnostics and imaging, although many challenges still need to be solved. However, for the application of gold nanoparticles (GNPs) in therapy and diagnostics it is necessary to know the bioaccumulation and local or systemic toxicity associated to them. The aim of the present study was to investigate the effects of intraperitoneal administration of GNPs on the histological alterations of the heart tissue of rats in an attempt to cover and understand the toxicity and the potential role of GNPs in the therapeutic and diagnostic applications.

View Article and Find Full Text PDF

Background: One particularly exciting field of research involves the use of gold nanoparticles (GNPs) in the detection and treatment of cancer cells in the liver. The detection and treatment of cancer is an area in which the light absorption and emission characteristics of GNPs have become useful. Currently, there are no data available regarding the fluorescence spectra or in vivo accumulation of nanoparticles (NPs) in rat liver after repeated administration.

View Article and Find Full Text PDF

Background: Blood viscosity appears to be independent predictor of stroke, carotid intima-media thickening, atherosclerosis and most cardiovascular diseases. In an attempt to understand the toxicity and the potential threat of GNPs therapeutic and diagnostic use, an array of rheological parameters were performed to quantify the blood plasma response to different sizes and administration periods of GNPs over a wide range of shear rates.

Methods: Healthy, thirty male Wistar-Kyoto rats, 8-12 weeks old (approximately 250 g body weight) were divided into control group (NG: n = 10), group 1 (G1A: intraperitoneal infusion of 10 nm GNPs for 3 days, n = 5 and G1B: intraperitoneal infusion of 10 nm GNPs for 7 days, n = 5), group 2 (G2A: intraperitoneal infusion of 50 nm GNPs for 3 days, n = 5 and G2B: intraperitoneal infusion of 50 nm GNPs for 7 days, n = 5).

View Article and Find Full Text PDF

Background: Nanoparticles (NPs) can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. The aim of the present study was to investigate the particle-size, dose and exposure duration effects of gold nanoparticles (GNPs) on the hepatic tissue in an attempt to cover and understand the toxicity and their potential therapeutic and diagnostic use.

View Article and Find Full Text PDF