Aim: Tissue expansion is an applicable technique to reconstruct many surgical defects. The aim of this research was to evaluate the histological changes caused by immediate skin tissue expansion in rats as an animal model.
Materials And Methods: Immediate skin tissue expansion in 18 adult female rats was performed using three different sizes (small, medium, and big) of polymethylmethacrylate tissue expanders at the dorsal surface of the metatarsal area of the right limb.
Calcium carbonate nanoparticles have shown promising potentials in the delivery of drugs and metabolites. There is however, a paucity of information on the safety of their intentional or accidental over exposures to biological systems and general health safety. To this end, this study aims at documenting information on the safety of subcutaneous doses of biogenic nanocrystals of aragonite polymorph of calcium carbonate derived from cockle shells (ANC) in Sprague-Dawley (SD) rats.
View Article and Find Full Text PDFCalcium carbonate is a porous inorganic nanomaterial with huge potential in biomedical applications and controlled drug delivery. This study aimed at evaluating the physicochemical properties and in vitro efficacy and safety of cockle shell aragonite calcium carbonate nanocrystals (ANC) as a potential therapeutic and hormonal delivery vehicle for osteoporosis management. Free and human recombinant parathyroid hormone 1-34 (PTH 1-34)-loaded cockle shell aragonite calcium carbonate nanocrystals (PTH-ANC) were synthesized and evaluated using standard procedures.
View Article and Find Full Text PDFBone lengthening during skeletal growth is driven primarily by the controlled enlargement of growth plate (GP) chondrocytes. The cellular mechanisms are unclear but membrane transporters are probably involved. We investigated the role of the Na(+)/H(+) antiporter (NHE1) and anion exchanger (AE2) in bone lengthening and GP chondrocyte hypertrophy in Sprague-Dawley 7-day-old rat (P7) bone rudiments using the inhibitors EIPA (5-(N-ethyl-N-isopropyl)amiloride) and DIDS (4,4-diidothiocyano-2,2-stilbenedisulphonate), respectively.
View Article and Find Full Text PDFThe mechanisms that underlie growth plate chondrocyte volume increase and hence bone lengthening are poorly understood. Many cell types activate the Na-K-Cl cotransporter (NKCC) to bring about volume increase. We hypothesised that NKCC may be responsible for the volume expansion of hypertrophic chondrocytes.
View Article and Find Full Text PDF