This study aimed to optimize the removal of Cu(II) ions from an aqueous solution using a oil bio-based membrane blended with 0.50 wt% graphene oxide (JPU/GO 0.50 wt%) using a central composite model (CCD) design using response surface methodology.
View Article and Find Full Text PDFWe present a novel synthesis strategy termed delayed linker addition (DLA) to synthesize hybrid zeolitic-imidazolate frameworks containing unsubstituted imidazolate linkers (Im) with SOD topology (hereafter termed Im/ZIF-8). Im linker incorporation can create larger voids and apertures, which are important properties for gas storage and separation. To date, there have been only a handful of reports of Im linkers incorporated into ZIF-8 frameworks, typically requiring arduous and complicated post synthesis approaches.
View Article and Find Full Text PDFDespite the potential of CH/CH separation, there have been no industrial applications of zeolitic-imidazole framework-8 (ZIF-8) mixed-matrix membranes (MMMs) because of the moderate separation performances and several challenging processing issues. Herein, we present a new paradigm of MMM fabrication, named polymer-modification-enabled in situ metal-organic framework formation (PMMOF), enabling in situ formation of ZIF-8 fillers inside the 4,4-(hexafluoroisopropylidene)diphthalic anhydride 2,4,6-trimethyl-1,3-phenylenediamine polymer. PMMOF consists of four steps including hydrolysis of a polymer, ion-exchange, ligand treatment, and imidization.
View Article and Find Full Text PDF