Aggregation of beta-amyloid peptides especially Aβ1-42 in amyloid plaques is one of the major neuropathological events in Alzheimer's disease. This event is normally accompanied by a relative reduction of the concentration of Aβ1-42 in the cerebrospinal fluid (CSF) of patient developing the signs of Alzheimer's disease. Here, we describe methods for isolation and for microchip gel electrophoresis of Aβ peptides in polydimethylsiloxane (PDMS) microfluidic chip.
View Article and Find Full Text PDFIn order to be more extensively used outside of research laboratories, lab-on-chip technologies must be mass-produced using low-cost materials such as thermoplastics. Thermoplastics, however, are generally hydrophobic in their native state, which makes them unsuitable for direct use with biological samples in aqueous solution, and thus require surface coating. This coating should be robust, inexpensive and simple to implement, in order not to hinder the industrial advantage of thermoplastic chips.
View Article and Find Full Text PDFIn this paper, we study characteristics of polymers (methylcellulose, hypromellose ((hydroxypropyl)methyl cellulose), poly(vinylpyrrolidone), and poly(vinyl alcohol)) with different chemical structures for microchip electrophoresis of non-denatured protein samples in a plastic microchip made of poly(methyl methacrylate) (PMMA). Coating efficiency of these polymers for controlling protein adsorption onto the channel surface of the plastic microchip, wettability of the PMMA surface, and electroosmotic flow in the PMMA microchannels in the presence of these polymers were compared. Also relative electrophoretic mobility of protein samples in solutions of these polymers was studied.
View Article and Find Full Text PDFAggregation of beta amyloid peptides especially Aβ1-42 in amyloid plaques is one of the major -neuropathological events in Alzheimer's disease. This event is normally accompanied by a relative reduction of the concentration of Aβ1-42 in the cerebrospinal fluid (CSF) of patients developing the signs of Alzheimer's disease. Here, we describe a microchip gel electrophoresis method in a polydimethylsiloxane (PDMS) chip that enables rapid profiling of major Aβ peptides.
View Article and Find Full Text PDFHere we report that nanopillar array structures have an intrinsic ability to suppress electroosmotic flow (EOF). Currently using glass chips for electrophoresis requires laborious surface coating to control EOF, which works as a counterflow to the electrophoresis mobility of negatively charged samples such as DNA and sodium dodecyl sulfate (SDS) denatured proteins. Due to the intrinsic ability of the nanopillar array to suppress the EOF, we carried out electrophoresis of SDS-protein complexes in nanopillar chips without adding any reagent to suppress protein adsorption and the EOF.
View Article and Find Full Text PDFWe report a CE-LIF method for the separation and detection of five synthetic amyloid-β peptides corresponding to an important family of CSF-biomarkers in the context of Alzheimer disease (AD). The presumed most relevant peptides (Aβ1-42, Aβ1-40, and Aβ1-38) that may support the differentiation between AD and healthy patients or other dementias were successfully detected in CSF by incorporating an immunoconcentration step prior to CE analysis of derivatized peptides. We labeled the Aβ peptides with a fluoroprobe dye before CE-LIF analysis.
View Article and Find Full Text PDFThe preferential aggregation of Aβ1-42 in amyloid plaques is one of the major neuropathological events in Alzheimer's disease. This is accompanied by a relative reduction of the concentration of Aβ1-42 in the cerebrospinal fluid (CSF) of patients developing the signs of Alzheimer's disease. Here, we describe a microchip gel electrophoresis method in polydimethylsiloxane (PDMS) chip that enables rapid profiling of major Aβ peptides in cerebrospinal fluid.
View Article and Find Full Text PDFIn this research, a simple on-line microchip gel electrophoresis with ITP was applied for the concentration and separation of BSA and its immunoassay complex with mAb in a single cross form PMMA microchip. We investigated the ITP concentration effect in PMMA MCE using combination of leading electrolytes, terminating electrolytes and other factors. We realized an ITP-based concentration and separation of BSA and its immunoassay complexes in standard cross-channel microchip gel electrophoresis, which exceeded 2000-fold concentration of BSA immunocomplex using Tris-H3PO4 as a leading electrolyte and Tris-gamma-amino butyric acid as a terminating electrolyte.
View Article and Find Full Text PDFWe have developed a new method for a fast and precise analysis of circle-to-circle amplification (C2CA) product for specific gene detection by microchip electrophoresis. In this method, we have added a new enzymatic step to the C2CA reaction, which could be carried out isothermally at 37 degrees C. Compared to the original single-stranded DNA, the double-stranded DNA that is produced by this enzymatic reaction is more reliable for analysis by microchip electrophoresis.
View Article and Find Full Text PDFWe report a dynamic cross-linking effect of Mg2+ that enhances the sieving properties of low-viscosity poly(vinylpyrrolidone) (PVP) solutions. A low-viscosity PVP solution was applied to nondenaturing microchip electrophoresis of protein samples using microchips made of poly(methyl methacrylate). The separation resolution of nondenatured protein markers in 1.
View Article and Find Full Text PDFOnline preconcentration of human serum albumin (HSA) and its immunocomplex with a monoclonal antibody by on-chip transient isotachophoresis is reported. An 800-fold signal enhancement was achieved following the preconcentration on standard cross-channel microchips made of poly (methyl methacrylate). Sample injection, preconcentration, and separation were done continuously and controlled solely by a sequential voltage switching program.
View Article and Find Full Text PDFA dynamic coating using methylcellulose (MC) and a nonionic detergent (polysorbate 20) was developed, which controlled protein adsorption onto the surface of microchannels on a microchip made of poly(methyl methacrylate) (PMMA). Optimum concentration of polysorbate 20 in combination with the range of MC concentrations controlled the protein adsorption onto the microchannel surface, and increased the solubility of the protein samples while facilitating the injection of high concentrations of MC solutions into the microchannels. Higher concentrations of nonionic detergent increased the EOF mobility as opposed to the electrophoretic mobility and caused the electrophoresis to fail.
View Article and Find Full Text PDF