The use of ionizing radiation offers a boundless range of applications for polymer scientists, from inducing crosslinking and/or degradation to grafting a wide variety of monomers onto polymeric chains. This review in particular aims to introduce the field of ionizing radiation as it relates to the degradation and recycling of cellulose and its derivatives. The review discusses the main mechanisms of the radiolytic sessions of the cellulose molecules in the presence and absence of water.
View Article and Find Full Text PDFNanohydrogel particles of polyethylene glycol (PEG), gelatin (GEL), and PEG-GEL mixtures (MIXs) were synthesized with a high electron beam and Co gamma-ray radiation. The relatively novel technique of Asymmetrical Flow Field Flow Fractionation (AF4 or AFFFF) coupled to a Multi-Angle Laser Light Scattering (MALLS) detector was mainly used to determine the hydrodynamic diameter (D) of the radiation-synthesized PEG, GEL, and PEG-GEL nanohydrogel particles. Our approach to achieving nanohydrogel particles is to enhance the intracrosslinking reactions and decrease the intercrosslinking reactions of the C-centered radicals of the PEG and GEL.
View Article and Find Full Text PDFUltra-high molar mass polyethylene (UHMMPE) is commonly used for ballistic-resistant body armor applications due to the superior strength of the fibers fabricated from this material combined with its low density. However, polymeric materials are susceptible to thermally induced degradation during storage and use, which can reduce the high strength of these fibers, and, thus, negatively impact their ballistic resistance. The objective of this work is to advance the field of lightweight and soft UHMMPE inserts used in various types of ballistic resistant-body armor via elucidating the mechanisms of chemical degradation and evaluating this chemical degradation, as well as the corresponding physical changes, of the UHMMPE fibers upon thermal aging.
View Article and Find Full Text PDFThe major societal problem of polymeric waste necessitates new approaches to break down especially challenging discarded waste streams. Gamma radiation was utilized in conjunction with varying solvent environments in an attempt to discern the efficacy of radiolysis as a tool for the deliberate degradation of model network polyesters. Our EPR results demonstrated that gamma radiolysis of neat resin and in the presence of four widely used solvents induces glycosidic scissions on the backbone of the polyester chains.
View Article and Find Full Text PDFWe demonstrate a method for measuring the H produced in water from the B(n,α)Li fission reaction. Low energy neutrons from the NIST Center for Neutron Research interact with borate-containing water in a temperature-controlled high pressure cell made from titanium. After exposure for one to several hours, the water is extracted and sparged with argon.
View Article and Find Full Text PDFNanogels-internally crosslinked macromolecules-have a growing palette of potential applications, including as drug, gene or radioisotope nanocarriers and as in vivo signaling molecules in modern diagnostics and therapy. This has triggered considerable interest in developing new methods for their synthesis. The procedure based on intramolecular crosslinking of polymer radicals generated by pulses of ionizing radiation has many advantages.
View Article and Find Full Text PDFIonizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers.
View Article and Find Full Text PDFPrimary amines form a key component of a well-studied mechanism for capturing carbon dioxide (CO) from the atmosphere. This study comprises a single-step synthesis of a novel sorbent for CO by grafting monomers rich in primary amines to three commercial-grade fabrics: polyethylene terephthalate, high-density polyethylene and nylon 6. An initial evaluation of the sorbency of the chosen monomers, allylamine and butenylamine, qualitatively confirmed their ability to extract CO from the atmosphere.
View Article and Find Full Text PDFTo improve properties such as thermal conductivity, low temperature thermal strain, and creep resistance of ultra-high molar mass polyethylene (UHMMPE) fibers, several researchers have previously undertaken efforts to crosslink these fibers using radiation. Ionizing radiation is commonly used to crosslink bulk UHMMPE in other applications, such as artificial joints. However, UHMMPE fibers differ from bulk UHMMPE in that they have a higher crystallinity (approximately 85% to 90%) and are very highly oriented during manufacturing in which the fibers are stretched 50 to 100 times their original length.
View Article and Find Full Text PDFThis article demonstrates that ionizing radiation induces simultaneous crosslinking and scission in poly(trimethylene carbonate--d-lactide) diblock and random copolymers. Copolymer films were electron-beam (EB) irradiated up to 300 kGy under anaerobic conditions and subsequently examined by evaluation of their structure (FT-IR, NMR), molecular weight, intrinsic viscosities, and thermal properties. Radiation chemistry of the copolymers is strongly influenced by the content of ester linkages of the lactide component.
View Article and Find Full Text PDFDuring the pulsed-electron beam direct grafting of neat styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) substrate, the radiolytically-produced styryl and carbon-centered FEP radicals undergo various desired and undesired competing reactions. In this study, a high-dose rate is used to impede the undesired free radical homopolymerization of styrene and ensure uniform covalent grafting through 125-μm FEP films. This outweighs the enhancement of the undesired crosslinking reactions of carbon-centered FEP radicals and the dimerization of the styryl radicals.
View Article and Find Full Text PDFThis work demonstrates the synergy between the thermo-mechanical and humidity induced degradation as well as the oxidation reactions in the kink-banded areas of ultra-high molar mass polyethylene (UHMMPE) fiber-based laminates used in body armor. For aged materials, the energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) results reveal high concentrations of oxygen containing products, and the EPR results demonstrate the presence of the peroxyl radicals (RO ) in the kink-banded areas. After one year of dark ambient storage, very long-lived RO radicals were observed primarily in the samples exposed to ageing conditions of elevated temperatures, humidity, and mechanical stress.
View Article and Find Full Text PDFNanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H and CO.
View Article and Find Full Text PDFWe have developed novel photopolymer gels to function as separators in blood collection tubes. By incorporating antioxidants such as α-tocopherol and nitroxides (TEMPO and TEMPOL), the new formulation can be sterilized with electron beam or gamma rays at a dose level of 17 kGy, without inducing premature curing of the photopolymers. For the blood separator gels that contain α-tocopherol, our results show that α-tocopherol plays a decisive role in impeding C-centered free radical propagation reactions through an Htransfer mechanism.
View Article and Find Full Text PDF(1) Background: A new family of nanosystems able to discern between normal and tumor cells and to release a therapeutic agent in controlled way were synthetized by e-beam irradiation. This technique permits to obtain biocompatible, sterile, carboxyl-functionalized polyvinylpyrrolidone (PVP-co-acrylic acid) nanogels (NGs); (2) Methods: Here, we performed a targeting strategy based on the recognition of over-expressed proteins on tumor cells, like the folate receptor. The selective targeting was demonstrated by co-culture studies and flow cytometry analysis, using folate conjugated NGs.
View Article and Find Full Text PDFIn order to test the effectiveness of oxalate-based polymeric adsorbents in the recovery of uranium from seawater, diallyl oxalate (DAOx) was grafted onto nylon 6 fabrics by exposing the fabric, immersed in pure liquid DAOx or in a surfactant-stabilized dispersion of DAOx in water, to electron beam or gamma radiation. Following drying and weighing to determine the degree of grafting (DoG), the presence of oxalate in the fabrics was verified using XPS. Zeta potential measurements showed the fabric surfaces to be negatively charged.
View Article and Find Full Text PDFIn the course of investigations of thermal neutron detection based on mixtures of (10)BF3 with other gases, knowledge was required of the photoabsorption cross sections of (10)BF3 for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology.
View Article and Find Full Text PDFPurpose: The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined.
Materials And Methods: Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays.
A nondestructive test method for detecting chlorides in concrete has been developed based on prompt gamma neutron activation (PGNA). Its performance has been modeled using a hybrid MCNP/optical ray tracing approach. Since the chlorides often come from de-icing salts applied to the concrete surface, the Cl concentration has a non-linear depth profile which is typically modeled by the erfc function.
View Article and Find Full Text PDFThe new nanodosimetry-based linear-quadratic (LQ) formula has been reviewed for mixed-LET irradiation. V-79 Chinese hamster cells have been irradiated with a mixed-LET field of fission neutrons and gamma rays at the University of Maryland Training Reactor (MUTR). The results show that the experimental survival curve agrees well with that predicted by the new nanodosimetry-based LQ model.
View Article and Find Full Text PDFPulse radiolysis with spectrophotometric and conductometric detection was utilized to study the formation and reactions of radicals from benzene and dienes in aqueous solutions. The benzene OH adduct, *C6H6OH, reacts with O2 (k = 3 x 10(8) L mol(-1) s(-1)) in a reversible reaction. The peroxyl radical, HOC6H6O2*, undergoes O2*- elimination, bimolecular decay, and reaction with benzene to initiate a chain reaction, depending on the dose rate, benzene concentration, and pH.
View Article and Find Full Text PDFUsed electrical transformer oils containing low or high concentrations of polychlorinated biphenyls (PCBs) were treated using electron, gamma, and ultraviolet radiation, and the conditions for complete dechlorination were developed. Dechlorination was determined by analysis of the inorganic chloride formed and the concentrations of remaining PCBs. Transformer oil containing approximately 95 microg g(-1) PCB (approximately 3.
View Article and Find Full Text PDFRadiolytic (electron beam) and photolytic (ultraviolet, UV) dechlorination of polychlorinated biphenyls (PCBs) in a marine sediment are described. Samples of a PCB-laden marine sediment, Standard Reference Material (SRM) 1944, NewYork/New Jersey Waterway Sediment, have been mixed with aqueous alcohol solutions and irradiated with an electron beam or photolyzed. Additives, such as alcohol, enhance the radiolytic yield and PCB dechlorination.
View Article and Find Full Text PDF