Publications by authors named "Mohaddes G"

The progressive decline of dopaminergic neurons in Parkinson's disease (PD) has been linked to an imbalance in energy and the failure of mitochondrial function. AMP-activated protein kinase (AMPK), the major intracellular energy sensor, regulates energy balance, and damage to nigral dopaminergic neurons induced by 6-hydroxydopamine (6-OHDA) is exacerbated in the absence of AMPK activity. This study aimed to examine the potential therapeutic advantages of AdipoRon, an AMPK activator, on motor function and mitochondrial homeostasis in a 6-OHDA-induced PD model.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the effects of the adiponectin receptor agonist, AdipoRon (Adipo), on motor function and cognitive performance in a rat model of Parkinson’s disease (PD) induced by 6-hydroxydopamine (6-OHDA).
  • Chronic treatment with Adipo improved both motor impairments and memory functions in hemiparkinsonian rats, particularly at doses of 1 and 10 μg, while also being compared to levodopa treatment.
  • Biochemical analysis revealed that Adipo reduced oxidative stress and increased levels of brain-derived neurotrophic factor (BDNF) and synaptic proteins, suggesting a mechanism for its neuroprotective effects.
View Article and Find Full Text PDF

Depression and anxiety are prevalent neuropsychiatric conditions among patients with Parkinson's disease (PD), which may manifest prior to motor symptoms. As levodopa, a prominent treatment for PD motor symptoms, provides few benefits for mood-related abnormalities, tackling non-motor symptoms is particularly important. AdipoRon (Ad), an adiponectin agonist, has demonstrated neuroprotective effects by suppressing neuroinflammatory responses and activating the AMPK/Sirt-1 signaling pathway.

View Article and Find Full Text PDF

Objectives: Prenatal stress (PS) can adversely affect cognitive and psychological functions in the offspring. This study aimed to determine the effect of PS and extremely low-frequency electromagnetic field (ELF-EMF) on spatial memory, serum corticosterone, brain-derived neurotrophic factor (BDNF) concentrations, and hippocampal BDNF levels in adult male offspring.

Materials And Methods: Female Wistar rats were randomly divided into four groups (n=6): Control, Stress, ELF-EMF (exposure to ELF-EMF), and S+EMF (simultaneous exposure to stress and the ELF-EMF) groups.

View Article and Find Full Text PDF

Background: Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents.

View Article and Find Full Text PDF

Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-activated protein kinase (AMPK) function.

View Article and Find Full Text PDF

Objectives: Aging and stress synergistically induce behavioral dysfunctions associated with oxidative and endoplasmic reticulum (ER) stress in brain regions. Considering the rejuvenating effects of young plasma on aging brain function, in the current study, we examined the effects of young plasma administration on anxiety-like behavior, NADH oxidase, NADPH oxidase, and ER stress markers in the hippocampus of old male rats.

Materials And Methods: Young (3 months old) and aged (22 months old) rats were randomly assigned into five groups: young control (Y), aged control (A), aged rats subjected to chronic stress for four weeks (A+S), aged rats subjected to chronic stress and treated with old plasma (A+S+OP), and aged rats subjected to chronic stress and treated with young plasma (A+S+YP).

View Article and Find Full Text PDF

Along with altering brain responses to stress, aging may also impair recovery from depression symptoms. In the present study, we investigated depressive-like behaviors in young and aged rats and assayed the levels of microRNA-101 (miR-101), Rac1/RhoA, PSD-95, and GluR1 in the prefrontal cortex (PFC) after stress cessation and after a recovery period. Young (3 months old) and aged (22 months old) male Wistar rats were divided into six groups; Young control (YNG), young rats received chronic stress for four weeks (YNG + CS), young rats received chronic stress for four weeks followed by a 6-week recovery period (YNG + CS + REC), Aged control (AGED), aged rats received chronic stress for four weeks (AGED + CS), and aged rats received chronic stress for four weeks followed by a 6-week recovery period (AGED + CS + REC).

View Article and Find Full Text PDF

Objectives: Apoptosis is common and often comorbid with aging and stress-related mood disorders. Evidence suggests that fresh mitochondria could reverse age-related dysfunctions in organs, especially in the brain. Therefore, this study investigated the effect of young mitochondria administration on the apoptosis process in the prefrontal cortex (PFC) of aged rats exposed to chronic stress.

View Article and Find Full Text PDF

This study aimed to determine the effects of mitotherapy on learning and memory and hippocampal kynurenine (Kyn) pathway, mitochondria function, and dendritic arborization and spines density in aged rats subjected to chronic mild stress. Twenty-eight male Wistar rats (22 months old( were randomly divided into Aged, Aged + Mit, Aged + Stress, and Aged + Stress + Mit groups. Aged rats in the stress groups were subjected to different stressors for 28 days.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is considered a multifactorial disease and a significant cause of dementia during aging. This neurodegenerative disease process is classically divided into two different pathologies cerebral accumulation of amyloid-β and hyperphosphorylated neurofibrillary tau tangles. In recent years, massive efforts have been made to treat AD by decreasing amyloid-β and tau in the brains of patients with AD, with no success.

View Article and Find Full Text PDF

There is a disagreement on whether extremely low frequency electromagnetic fields (ELF-EMF) have a beneficial or harmful effect on anxiety-like behavior. Prenatal stress induces frequent disturbances in offspring physiology such as anxiety-like behavior extending to adulthood. This study was designed to evaluate the effects of prenatal stress and ELF-EMF exposure before and during pregnancy on anxiety-like behavior and some anxiety-related pathways in the hippocampus of female rat offspring.

View Article and Find Full Text PDF

Purpose: Parkinson's disease (PD) is associated with the destruction of dopaminergic neurons in the substantia nigra (SN). Hydroxychloroquine (HCQ) has the capability to cross the blood-brain barrier and promote a neuroprotective potential. This study evaluated the effects of HCQ on the 6-hydroxydopamine (6-OHDA)-induced PD model in rats.

View Article and Find Full Text PDF

Impaired mitochondrial function and abnormalities in the tryptophan (Trp)-kynurenine (Kyn) pathway are linked to age-related mood disorders. This study investigated the effect of intracerebroventricular (ICV) injection of the mitochondria isolated from young rat brain on depression-like behaviors of aged rats subjected to chronic mild stress (CMS). Aged (22 months old) male rats were randomly assigned into four groups: Aged, Aged + Mit, Aged + CMS, and Aged + CMS + Mit.

View Article and Find Full Text PDF

Pathophysiology of depression in elderlies is linked to aging-associated increase in indoleamine 2,3-dioxygenase (IDO) levels and activity and kynurenine (Kyn) metabolites. Moreover, these aging-induced changes may alter the brain's responses to stress. Growing evidence suggested that young plasma can positively affect brain dysfunctions in old age.

View Article and Find Full Text PDF

Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are common causes of chronic liver disease that share the range of steatosis, steatohepatitis, fibrosis, cirrhosis, and finally, hepatocellular carcinoma. They are identified by the dysregulation of disease-specific signalling pathways and unique microRNAs. Capsaicin is an active ingredient of chilli pepper that acts as an agonist of transient receptor potential vanilloid subfamily 1.

View Article and Find Full Text PDF

Autoimmune diseases (AD), which are classified as chronic injuries, are caused by a specific auto-reactive reaction. The etiology of most ADs is not well understood. Meanwhile, Autophagy is a protective response defining as a catabolic method by lysosomes tending to maintain homeostasis acts by recycling and discrediting cell compartments.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Young plasma contains several rejuvenating factors that exert beneficial effects in ageing and neurodegenerative diseases: can repeated transfusion of young plasma improve depressive behaviour in aged rats? What is the main finding and its importance? Following chronic transfusion of young plasma, depressive behaviour was improved in the depression model of aged rats, which was associated with reduced apoptosis process in the prefrontal cortex.

Abstract: Brain ageing alters brain responses to stress, playing an essential role in the pathophysiology of late-life depression. Moreover, apoptotic activity is up-regulated in the prefrontal cortex in ageing and stress-related mood disorders.

View Article and Find Full Text PDF

Purpose: The purpose of the study was to evaluate the possible protective effects of low dose sodium nitrate preconditioning on the peripheral neuropathy in streptozotocin (STZ)-induced diabetic model.

Methods: Male Wistar rats were randomly divided into five groups: control (no intervention), control treated sodium nitrate (100 mg/L in drinking water), diabetic (no intervention), diabetic treated NPH insulin (2-4 U), and diabetic treated sodium nitrate (100 mg/L in drinking water). Diabetes was induced by intraperitoneal injection of STZ (60 mg/kg).

View Article and Find Full Text PDF

The present study aimed to evaluate the preventive role of physical and cognitive training separately or in combination on memory dysfunction, inflammatory factors and apoptotic markers in the hippocampal-ischemia model of rat. The ischemia model was established by infusion of endothelin-1 (ET-1) into the animal's hippocampus using stereotaxic surgery. Physical, cognitive and combination training groups exposed to voluntary running wheel exercise or modified Barnes maze cognitive task or combination of this interventions for 4 weeks, respectively.

View Article and Find Full Text PDF

Objective: Diabetes induces sensory symptoms of neuropathy as positive (hyperalgesia), negative (hypoalgesia), or both.

Methods: In the present study, fifty male Wistar rats were allocated to five groups: control, control+nitrate, diabetes, diabetes+insulin, and diabetes+nitrate. Thirty days after diabetes confirmation, insulin (2-4 U/day) was injected subcutaneously in diabetes+insulin group and nitrate (100 mg/l) was added into drinking water of the control+nitrate and diabetes+nitrate groups for a period of 2 months.

View Article and Find Full Text PDF

The effectiveness of transcranial photobiomodulation (tPBM) and methylene Blue (MB) in treating learning and memory impairments is previously reported. In this study, we investigated the effect of tPBM and MB in combination or alone on unpredictable chronic mild stress (UCMS)-induced learning and memory impairments in mice. Fifty-five male BALB/c mice were randomly allocated to five groups: control, laser sham + normal saline (NS), tPBM + NS, laser sham + MB, and tPBM + MB.

View Article and Find Full Text PDF

Cognitive dysfunction is the most common nonphysical impairment in the stroke survivors. This impairment has a negative impact on patients' quality of life affects their daily living activities. Both pharmacological and nonpharmacological interventions are employed to improve cognitive impairment.

View Article and Find Full Text PDF

This study aimed to investigate the effects of ghrelin, as a neuroprotective agent, on cognitive impairment and apoptosis pathway in methamphetamine-treated male rats. Sixty adult male Wistar rats were randomly divided into six groups (n = 10): Saline/Saline (SS), Saline/Ghrelin (SG), Methamphetamine/Simultaneous Saline (MSS), Methamphetamine/Simultaneous Ghrelin (MSG), Methamphetamine/Delayed Saline (MDS), and Methamphetamine/Delayed ghrelin (MDG). Methamphetamine (5 mg/kg) and ghrelin (5 nM/kg) were injected intraperitoneally.

View Article and Find Full Text PDF