Recent reports on machine learning and machine vision (MV) devices have demonstrated the potential of two-dimensional (2D) materials and devices. Yet, scalable 2D devices are being challenged by contact resistance and Fermi level pinning (FLP), power consumption, and low-cost CMOS compatible lithography processes. To enable CMOS + 2D, it is essential to find a proper lithography strategy that can fulfill these requirements.
View Article and Find Full Text PDFRecent reports on thermal and thermoelectric properties of emerging 2D materials have shown promising results. Among these materials are Zirconium-based chalcogenides such as zirconium disulfide (ZrS ), zirconium diselenide (ZrSe ), zirconium trisulfide (ZrS ), and zirconium triselenide (ZrSe ). Here, the thermal properties of these materials are investigated using confocal Raman spectroscopy.
View Article and Find Full Text PDFUnlabelled: Developing convenient and accurate SARS-CoV-2 antigen test and serology test is crucial in curbing the global COVID-19 pandemic. In this work, we report an improved indium oxide (InO) nanoribbon field-effect transistor (FET) biosensor platform detecting both SARS-CoV-2 antigen and antibody. Our FET biosensors, which were fabricated using a scalable and cost-efficient lithography-free process utilizing shadow masks, consist of an InO channel and a newly developed stable enzyme reporter.
View Article and Find Full Text PDFTo investigate the quantum confinement effect on excitons in hybrid perovskites, single-crystal platelets of CHNHPbBr are grown on mica substrates using one-step chemical vapor deposition. Photoluminescence measurements reveal a monotonous blue shift with a decreasing platelet thickness, which is accompanied by a significant increase in exciton binding energy from approximately 70 to 150 meV. Those phenomena can be attributed to the one-dimensional (1D) quantum confinement effect in the two-dimensional platelets.
View Article and Find Full Text PDFTransition metal dichalcogenide two-dimensional materials have attracted significant attention due to their unique optical, mechanical, and electronic properties. For example, molybdenum disulfide (MoS) exhibits a tunable band gap that strongly depends on the numbers of layers, which makes it an attractive material for optoelectronic applications. In addition, recent reports have shown that laser thinning can be used to engineer an MoS monolayer with specific shapes and dimensions.
View Article and Find Full Text PDFNanoribbon- and nanowire-based field-effect transistor (FET) biosensors have stimulated a lot of interest. However, most FET biosensors were achieved by using bulky Ag/AgCl electrodes or metal wire gates, which have prevented the biosensors from becoming truly wearable. Here, we demonstrate highly sensitive and conformal InO nanoribbon FET biosensors with a fully integrated on-chip gold side gate, which have been laminated onto various surfaces, such as artificial arms and watches, and have enabled glucose detection in various body fluids, such as sweat and saliva.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements.
View Article and Find Full Text PDFBlack phosphorus (BP) has been recently rediscovered as an elemental two-dimensional (2D) material that shows promising results for next generation electronics and optoelectronics because of its intrinsically superior carrier mobility and small direct band gap. In various 2D field-effect transistors (FETs), the choice of metal contacts is vital to the device performance, and it is a major challenge to reach ultralow contact resistances for highly scaled 2D FETs. Here, we experimentally show the effect of a work function tunable metal contact on the device performance of BP FETs.
View Article and Find Full Text PDFLayered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals.
View Article and Find Full Text PDFSemiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors.
View Article and Find Full Text PDFWe present a comparative study of quasi-metallic (Eg ∼ 100 meV) and semiconducting (Eg ∼ 1 eV) suspended carbon nanotube pn-junctions introduced by electrostatic gating. While the built-in fields of the quasi-metallic carbon nanotubes (CNTs) are 1-2 orders of magnitude smaller than those of the semiconducting CNTs, their photocurrent is 2 orders of magnitude higher than the corresponding semiconducting CNT devices under the same experimental conditions. Here, the large exciton binding energy in semiconducting nanotubes (∼400 meV) makes it difficult for excitons to dissociate into free carriers that can contribute to an externally measured photocurent.
View Article and Find Full Text PDFPhotodetectors based on quasi-metallic carbon nanotubes exhibit unique optoelectronic properties. Due to their small bandgap, photocurrent generation is possible at room temperature. The origin of this photocurrent is investigated to determine the underlying mechanism, which can be photothermoelectric effect or photovoltaic effect, depending on the bandgap magnitude of the quasi-metallic nanotube.
View Article and Find Full Text PDFWe investigate the electronic and optoelectronic properties of quasi-metallic nanotube pn-devices, which have smaller band gaps than most known bulk semiconductors. These carbon nanotube-based devices deviate from conventional bulk semiconductor device behavior due to their low-dimensional nature. We observe rectifying behavior based on Zener tunneling of ballistic carriers instead of ideal diode behavior, as limited by the diffusive transport of carriers.
View Article and Find Full Text PDFWe report a detailed comparison of ultraclean suspended and on-substrate carbon nanotubes (CNTs) in order to quantify the effect of the substrate interaction on the effective band gap of metallic nanotubes. Here, individual CNTs are grown across two sets of electrodes, resulting in one segment of the nanotube that is suspended across a trench and the other segment supported on the substrate. The suspended segment shows a significant change in the conductance (ΔG/G = 0.
View Article and Find Full Text PDF