Publications by authors named "Moffatt P"

This paper investigates the relationship between monetary policy and bank risk-taking by introducing a model wherein banks expend a level of costly monitoring effort to select low-risk projects, thereby reducing the risk associated with the loans they grant. The impact of monetary policy on bank risk-taking is examined through both theoretical models and empirical analysis. The paper compares theoretical models with different assumptions, revealing an unambiguous negative effect without the assumption of limited liability for banks, and an ambiguous effect with the assumption of limited liability for banks, influenced by the equity ratio.

View Article and Find Full Text PDF
Article Synopsis
  • - DNA sequencing helps identify genetic variants in osteogenesis imperfecta (OI), but it struggles with determining if these variants are harmful, especially those affecting splicing; RNA sequencing offers more clarity but requires specific cell types.
  • - Researchers successfully used urine-derived cells (UDC) from 45 young participants, including those with OI, to assess genetic variants and identify pathogenicity for variants deemed uncertain in prior DNA tests.
  • - The study demonstrated that UDC's gene expression profiles are similar to those of fibroblasts and effective for RNA sequencing; abnormal splicing was found in several pathogenic variants and some uncertain variants, highlighting the potential of UDC for genetic analysis in OI.
View Article and Find Full Text PDF

Mutations in SP7 (encoding osterix) have been identified as a rare cause of recessive osteogenesis imperfecta ('OI type XII') and in one case of dominant juvenile Paget's disease. We present the first description of young adult siblings with OI due to a unique heterozygous mutation in SP7. The phenotype was characterized by fragility fractures (primarily of the long bone diaphyses), poor healing, scoliosis, and dental malocclusion.

View Article and Find Full Text PDF

BRIL (bone restricted ifitm-like; also known as IFITM5) is a transmembrane protein expressed in osteoblasts. Although its role in skeletal development and homeostasis is unknown, mutations in BRIL result in rare dominant forms of osteogenesis imperfecta. The pathogenic mechanism has been proposed to be a gain-of or neomorphic function.

View Article and Find Full Text PDF

The mouth environment comprises the second most significant microbiome in the body, and its equilibrium is critical in oral health. Secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1), a protein normally produced by the gingival epithelium to mediate its attachment to teeth, was suggested to be bactericidal. Our aim was to further explore the antibacterial potential of human SCPPPQ1 by characterizing its mode of action and identifying its active portions.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a bone fragility disorder that is usually caused by mutations affecting collagen type I. We compared the calvaria bone tissue transcriptome of male 10-week-old heterozygous Jrt ( mutation) and homozygous mice ( mutation) to their respective littermate results. We found that Jrt and mice shared 185 differentially expressed genes (upregulated: 106 genes; downregulated: 79 genes).

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that is most often caused by mutations in collagen type I encoding genes. Even though bone fragility is the most conspicuous finding in OI, the muscle system is also affected. In the present study we explored the muscle phenotype related to collagen type I mutations on the transcriptome level.

View Article and Find Full Text PDF

The gingival seal around teeth prevents bacteria from destroying the tooth-supporting tissues and disseminating throughout the body. Porphyromonas gingivalis, a major periodontopathogen, degrades components of the specialized extracellular matrix that mediates attachment of the gingiva to the tooth. Of these, secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1) protein has a distinctive resistance to degradation, suggesting that it may offer resistance to bacterial attack.

View Article and Find Full Text PDF

Snorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects.

View Article and Find Full Text PDF

Purpose: Cardiac rehabilitation (CR) is a recommendation in international clinical practice guidelines given its benefits; however, use is suboptimal. The purpose of this position statement was to translate evidence on interventions that increase CR enrollment and adherence into implementable recommendations.

Methods: The writing panel was constituted by representatives of societies internationally concerned with preventive cardiology and included disciplines that would be implementing the recommendations.

View Article and Find Full Text PDF

Background: Cardiac Rehabilitation (CR) is a recommendation in international clinical practice guidelines given its' benefits, however use is suboptimal. The purpose of this position statement was to translate evidence on interventions that increase CR enrolment and adherence into implementable recommendations.

Methods: The writing panel was constituted by representatives of societies internationally concerned with preventive cardiology, and included disciplines that would be implementing the recommendations.

View Article and Find Full Text PDF

The junctional epithelium (JE) is a specialized portion of the gingiva that seals off the tooth-supporting tissues from the oral environment. This relationship is achieved via a unique adhesive extracellular matrix that is, in fact, a specialized basal lamina (sBL). Three unique proteins - amelotin (AMTN), odontogenic ameloblast-associated (ODAM), and secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1) - together with laminin-332 structure the supramolecular organization of this sBL and determine its adhesive capacity.

View Article and Find Full Text PDF

Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has important roles in the developing skeleton. We previously showed that SMPD3 deficiency results in delayed extracellular matrix (ECM) mineralization and severe skeletal deformities in an inducible knockout mouse model, ; mice, in which was ablated in -expressing chondrocytes and osteoblasts during early skeletogenesis. However, as shown in the current study, ablation of postnatally in 3-month-old ; mice resulted in only a mild bone mineralization defect.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) type V is caused by an autosomal dominant mutation in the IFITM5 gene, also known as BRIL. The c.-14C>T mutation in the 5'UTR of BRIL creates a novel translational start site adding 5 residues (MALEP) in frame with the natural coding of BRIL.

View Article and Find Full Text PDF

BRIL (bone-restricted IFITM-like), is a short transmembrane protein expressed almost exclusively in osteoblasts. Although much is known about its bone-restricted gene expression pattern and protein biochemical and topological features, little information is available for BRIL physiological function. Two autosomal dominant forms of osteogenesis imperfecta (OI) are caused by distinct, but recurrent mutations in the BRIL gene.

View Article and Find Full Text PDF

A specialized basal lamina (sBL) mediates adhesion of certain epithelial cells to the tooth. It is distinct because it does not contain collagens type IV and VII, is enriched in laminin-332, and includes three novel constituents called amelotin (AMTN), odontogenic ameloblast-associated (ODAM), and secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1). The objective of this study was to clarify the structural organization of the sBL.

View Article and Find Full Text PDF

Background: In vitro studies suggest that the multiple functions of decorin are related to both its core protein and its dermatan sulfate chain. To determine the contribution of the dermatan sulfate chain to the functional properties of decorin in vivo, a mutant mouse whose decorin lacked a dermatan sulfate chain was generated.

Results: Homozygous mice expressing only the decorin core protein developed and grew in a similar manner to wild type mice.

View Article and Find Full Text PDF

Unlabelled: In 26 of 94 individuals (28%) below 21 years of age who had a significant fracture history but did not have extraskeletal features of osteogenesis imperfecta (OI), we detected disease-causing mutations in OI-associated genes.

Introduction: In children who have mild bone fragility but do not have extraskeletal features of OI, it can be difficult to establish a diagnosis on clinical grounds. Here, we assessed the diagnostic yield of genetic testing in this context, by sequencing a panel of genes that are associated with OI.

View Article and Find Full Text PDF

Unlabelled: We detected disease-causing mutations in 585 of 598 individuals (98 %) with typical features of osteogenesis imperfecta (OI). In mild OI, only collagen type I encoding genes were involved. In moderate to severe OI, mutations in 12 different genes were found; 11 % of these patients had mutations in recessive genes.

View Article and Find Full Text PDF

Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9.

View Article and Find Full Text PDF

The epithelial ameloblasts are separated from the maturing enamel by an atypical basement membrane (BM) that is enriched in laminin 332 (LM-332). This heterotrimeric protein (α3, ß3 and γ2 chains) provides structural integrity to BMs and influences various epithelial cell processes including cell adhesion and differentiation. Mouse models that lack expression of individual LM-332 chains die shortly after birth.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) type VI is a recessively inherited form of OI that is caused by mutations in SERPINF1, the gene coding for pigment-epithelium derived factor (PEDF). Here, we report on two apparently unrelated children with OI type VI who had the same unusual homozygous variant in intron 6 of SERPINF1 (c.787-10C>G).

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) type I is usually caused by COL1A1 stop or frameshift mutations, leading to COL1A1 haploinsufficiency. Here we report on 12 individuals from 5 families who had OI type I due to an unusual cause—heterozygous deletions of the entire COL1A1 gene. The deletions were initially detected by semiconductor-based sequencing of genomic DNA and confirmed by quantitative PCR.

View Article and Find Full Text PDF

Odontogenic ameloblast-associated (ODAM) belongs to the secretory calcium-binding phosphoprotein (SCPP) gene cluster. It is expressed by the epithelial ameloblasts during the accrued mineralisation of enamel and by cells of the junctional epithelium (JE), a specialised portion of the gingiva that plays a critical role in periodontal health. In both cases, ODAM localises at the interface between the cells and the tooth surface.

View Article and Find Full Text PDF

Secreted protein, acidic, cysteine-rich (SPARC) is a glycoprotein that binds to collagen type I and other proteins in the extracellular matrix. Using whole-exome sequencing to identify the molecular defect in two unrelated girls with severe bone fragility and a clinical diagnosis of osteogenesis imperfecta type IV, we identified two homozygous variants in SPARC (GenBank: NM_003118.3; c.

View Article and Find Full Text PDF