Publications by authors named "Moens U"

Knowledge of Human Polyomavirus (HPyV) infection in the anal area and its association with sexually transmitted infections such as Human Papillomavirus (HPV) and Human Immunodeficiency Virus (HIV) remains limited. Therefore, anal specimens from 150 individuals of both sexes were analyzed for screening purposes. HPV DNA was found in 50.

View Article and Find Full Text PDF

Despite recent advances in prevention, detection and treatment, oral squamous cell carcinoma (OSCC) remains a global health concern, strongly associated with environmental and lifestyle risk factors and infection with oncogenic viruses. Merkel Cell Polyomavirus (MCPyV), well known to be the causative agent of Merkel Cell Carcinoma (MCC) has been found in OSCC, suggesting its potential role as a co-factor in the development of oral cavity cancers. To improve our understanding about MCPyV in oral cavities, the detection and analysis of MCPyV DNA, transcripts and miRNA were performed on OSCCs and oral potentially malignant disorders (OPMDs).

View Article and Find Full Text PDF
Article Synopsis
  • Modified vaccinia virus Ankara (MVA) has been studied as a vaccine vector against various diseases, but concerns exist about its ability to recombine with natural viruses, potentially creating new, unpredictable viruses.
  • Previous experiments showed that co-infection and superinfection of MVA with a feline cowpox virus led to the production of recombinant viruses with altered genomes and unique plaque characteristics.
  • The study found that some recombinant viruses not only had a genetic composition similar to MVA-HANP but also regained lost genes and acquired new characteristics, raising safety concerns for the use of MVA in vaccines.
View Article and Find Full Text PDF

Monkeypox virus (MPXV) is the etiological agent of monkeypox (mpox), a zoonotic disease. MPXV is endemic in the forested regions of West and Central Africa, but the virus has recently spread globally, causing outbreaks in multiple non-endemic countries. In this paper, we review the characteristics of the virus, including its ecology, genomics, infection biology, and evolution.

View Article and Find Full Text PDF

Background: JC polyomavirus (JCPyV) persists asymptomatic in more than half of the human population. Immunocompromising conditions may cause reactivation and acquisition of neurotropic rearrangements in the viral genome, especially in the non-coding control region (NCCR). Such rearranged JCPyV strains are strongly associated with the development of progressive multifocal leukoencephalopathy (PML).

View Article and Find Full Text PDF

Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus.

View Article and Find Full Text PDF

Merkel cell polyomavirus (MCPyV) is the etiological agent of the majority of Merkel cell carcinoma (MCC): a rare skin tumor. To improve our understanding of the role of MCPyV in MCCs, the detection and analysis of MCPyV DNA and transcripts were performed on primary tumors and regional lymph nodes from two MCC patients: one metastatic and one non-metastatic. MCPyV-DNA was searched by a quantitative polymerase chain reaction (qPCR), followed by the amplification of a Large T Antigen (LTAg), Viral Protein 1 (VP1) and Non-Coding Control Region (NCCR).

View Article and Find Full Text PDF

Due to its peculiar histopathological findings, pleomorphic xanthoastrocytoma (PXA), a rare cerebral tumor of young adults with a slow growth and a good prognosis, resembles to the lytic phase of progressive multifocal leukoencephalopathy, a fatal neurodegenerative disease caused by JC polyomavirus (JCPyV). Therefore, the presence of JCPyV DNA was examined in an 11-year-old child with xanthoastrocytoma, WHO grade 3, by quantitative PCR (qPCR) and nested PCR (nPCR) using primers amplifying sequences encoding the N- and C-terminal region of large T antigen (LTAg), the non-coding control region (NCCR), and viral protein 1 (VP1) DNA. The expression of transcripts from LTAg and VP1 genes was also evaluated.

View Article and Find Full Text PDF

Introduction: JC polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease resulting from the lytic infection of oligodendrocytes that may develop in immunosuppressed individuals: HIV1 infected or individuals under immunosuppressive therapies. Understanding the biology of JCPyV is necessary for a proper patient management, the development of diagnostic tests, and risk stratification.

Areas Covered: The review covers different areas of expertise including the genomic characterization of JCPyV strains detected in different body compartments (urine, plasma, and cerebrospinal fluid) of PML patients, viral mutations, molecular diagnostics, viral miRNAs, and disease.

View Article and Find Full Text PDF

In relation to the comment by Henriksen and Rinaldo, the authors intend to emphasize that before every experiment with SVGp12 cells they routinely test the cells for the absence of BKPyV contamination. The scientists can state that the SVGp12 cells used in their laboratory were not infected by BKPyV and that their results were also validated on the COS-7 cell line, which is permissive for JCPyV infection. Therefore, the overall findings of the study and its conclusions remain authentic.

View Article and Find Full Text PDF

Merkel cell polyomavirus (MCPyV) is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. MCPyV large T-antigen (LTag) and small T-antigen (sTag) are the main oncoproteins involved in MCPyV-induced MCC. A hallmark of MCPyV-positive MCC cells is the expression of a C-terminal truncated LTag.

View Article and Find Full Text PDF

Since it was clearly established that HIV/AIDS predisposes to the infection, persistence or reactivation of latent viruses, the prevalence of human polyomaviruses (HPyVs) among HIV-1-infected patients and a possible correlation between HPyVs and HIV sero-status were investigated. PCR was performed to detect and quantify JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV DNA in the urine and plasma samples of 103 HIV-1-infected patients. Subsequently, NCCR, VP1 and MCPyV LT sequences were examined.

View Article and Find Full Text PDF
Article Synopsis
  • CPXV is the virus responsible for cowpox, a type of zoonotic infection primarily found in Eurasia and linked to contact with infected animals.
  • In a study involving five CPXV isolates from cats and humans in the Fennoscandian region, researchers sequenced their genomes, revealing variations in size and genetic structure.
  • Phylogenetic analysis showed that CPXV exists as a complex group of at least five major clusters and suggests the need for reclassification due to its polyphyletic nature.
View Article and Find Full Text PDF

Since the non-coding control region (NCCR) and microRNA (miRNA) could represent two different and independent modalities of regulating JC polyomavirus (JCPyV) replication at the transcriptional and post-transcriptional levels, the interplay between JC viral load based on NCCR architecture and miRNA levels, following JCPyV infection with archetypal and rearranged ()-NCCR JCPyV variants, was explored in COS-7 and SVGp12 cells infected by different JCPyV strains. Specifically, the involvement of JCPyV miRNA in regulating viral replication was investigated for the archetypal CY strain-which is the transmissible form-and for the rearranged MAD-1 strain, which is the first isolated variant from patients with progressive multifocal leukoencephalopathy. The JCPyV DNA viral load was low in cells infected with CY compared with that in MAD-1-infected cells.

View Article and Find Full Text PDF

Viral infections can lead to the generation of new virus particles, whereas other viruses behave as chameleons by camouflaging themselves to evade or mislead the immune system of the host, thereby establishing a latent infection [...

View Article and Find Full Text PDF

Merkel cell polyomavirus (MCPyV) has been detected in respiratory specimens including those from Cystic Fibrosis (CF) patients, raising questions about its immunological and clinical relevance in the respiratory tract. MCPyV might promote an inappropriate antiviral response contributing to a chronic inflammatory response and resulting in detrimental effects in CF. Respiratory samples (n = 1138) were randomly collected from respiratory tract of CF patients (n = 539) during July 2018-October 2019.

View Article and Find Full Text PDF
Article Synopsis
  • Orthopoxviruses (OPXVs) can infect both natural hosts and humans, with a recent study focusing on an atypical cowpox virus called CPXV-No-H2, isolated from an 18-year-old in Northern Norway.
  • The complete genome of CPXV-No-H2 was sequenced, revealing it has a length of 220,276 base pairs and includes 217 predicted genes, with many genes showing similarities to other OPXVs from the Old World and North America.
  • Phylogenetic analysis indicates that CPXV-No-H2 represents a unique clade that might have emerged through multiple recombination events, suggesting the existence of a distinct new group of cowpox viruses related to ECTV-Abatino.
View Article and Find Full Text PDF

Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression.

View Article and Find Full Text PDF

As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans.

View Article and Find Full Text PDF

To date, 14 human polyomaviruses (HPyVs) have been identified using high-throughput technologies. Among them, MCPyV, HPyV6, HPyV7 and TSPyV present a skin tropism, but a causal role in skin diseases has been established only for MCPyV as a causative agent of Merkel cell carcinoma (MCC) and TSPyV as an etiological agent of Trichodysplasia Spinulosa (TS). In the search for a possible role for cutaneous HPyVs in the development of skin malignant lesions, we investigated the prevalence of MCPyV, HPyV6, HPyV7 and TSPyV in actinic keratosis (AK), a premalignant skin lesion that has the potential to progress towards a squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Markers of JC polyomavirus (JCPyV) activity can be used to evaluate the risk of progressive multifocal leukoencephalopathy (PML) in treated multiple sclerosis (MS) patients. The presence of JCPyV DNA and microRNA (miR-J1-5p), the anti-JCV index and the sequence of the non-coding control region (NCCR) in urine and plasma were determined in 42 MS subjects before treatment (T0), 6 months (T6) and 12 months (T12) after natalizumab, ocrelizumab, fingolimod or dimethyl-fumarate administration and in 25 healthy controls (HC). The number of MS patients with viruria increased from 43% at T0 to 100% at T12, whereas it remained similar for the HC group (35-40%).

View Article and Find Full Text PDF
Article Synopsis
  • Numerous tumor viruses, including HTLV-1, HCV, and HPV, are responsible for about 15% of human cancers.
  • Despite differences in their oncoproteins, these viruses share common methods for promoting cancer characteristics in infected cells.
  • The review highlights recent findings on how these viruses induce epigenetic changes, impacting gene expression and contributing to cancer development without altering DNA sequences.
View Article and Find Full Text PDF

Background: Approximately 15% of human cancers are attributed to viruses. Numerous studies have shown that high-risk human polyomaviruses (HR-HPV) and Merkel cell polyomavirus (MCPyV) are two human tumor viruses associated with anogenetal and oropharyngeal cancers, and with Merkel cell carcinoma, respectively. MCPyV has been found in HR-HPV positive anogenetal and oropharyngeal tumors, suggesting that MCPyV can act as a co-factor in HR-HPV induced oncogenesis.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been declared a global pandemic. Our goal was to determine whether co-infections with respiratory polyomaviruses, such as Karolinska Institutet polyomavirus (KIPyV) and Washington University polyomavirus (WUPyV) occur in SARS-CoV-2 infected patients. Oropharyngeal swabs from 150 individuals, 112 symptomatic COVID-19 patients and 38 healthcare workers not infected by SARS-CoV-2, were collected from March 2020 through May 2020 and tested for KIPyV and WUPyV DNA presence.

View Article and Find Full Text PDF

Polyomaviruses infect many species, including humans. So far, 15 polyomaviruses have been described in humans, but it remains to be established whether all of these are genuine human polyomaviruses. The most recent polyomavirus to be detected in a person is Quebec polyomavirus (QPyV), which was identified in a metagenomic analysis of a stool sample from an 85-year-old hospitalized man.

View Article and Find Full Text PDF