Purpose: The surgical glue is widely used in closing cutaneous surgical wounds. Corticosteroids are indicated for their anti-inflammatory and immunomodulatory properties. The present work evaluated the pharmacological effects of triamcinolone (AT) incorporated into surgical glue (C) on the initial phase of the wound healing process in Wistar rats.
View Article and Find Full Text PDFJ Biomater Appl
July 2024
Three-dimensional (3D) structures are actually the state-of-the-art technique to create porous scaffolds for tissue engineering. Since regeneration in cartilage tissue is limited due to intrinsic cellular properties this study aims to develop and characterize three-dimensional porous scaffolds of poly (L-co-D, L lactide-co-trimethylene carbonate), PLDLA-TMC, obtained by 3D fiber deposition technique. The PLDLA-TMC terpolymer scaffolds (70:30), were obtained and characterized by scanning electron microscopy, gel permeation chromatography, differential scanning calorimetry, thermal gravimetric analysis, compression mechanical testing and study on in vitro degradation, which showed its amorphous characteristics, cylindrical geometry, and interconnected pores.
View Article and Find Full Text PDFThe skin, the human body's largest organ, possesses a protective barrier that renders it susceptible to various injuries, including burns. Following burn trauma, the inflammatory process triggers both innate and adaptive immune responses, leading to the polarization of macrophages into two distinct phenotypes: the pro-inflammatory M1 and the anti-inflammatory M2. This dual response sets the stage for wound healing and subsequent tissue regeneration.
View Article and Find Full Text PDFDrug delivery systems of natural antimicrobial compounds, such as copaiba oil (CO), have become relevant in the scientific community due to the recent prevalence of the public health complications related to antibiotic resistance. Electrospun devices act as an efficient drug delivery system for these bioactive compounds, reducing systemic side effects and increasing the effectiveness of the treatment. In this way, the present study aimed to evaluate the synergistic and antimicrobial effect of the direct incorporation of different concentrations of CO in a poly(L-co-D,L lactic acid) and natural rubber (NR) electrospun membrane.
View Article and Find Full Text PDFThe state-of-the-art sustained drug delivery systems are related to features to improve pharmacological transport through a controlled ratio between drug release and the desired therapeutic effect. Microspheres of biodegradable polymers, such as poly(lactic-co-glycolic acid) (PLGA), play an important role in these approaches, directing the release in a specific region of interest. In this way, the encapsulation of doxycycline (DOX) as a microbial agent turns the PLGA microspheres into a potential device for the treatment of topic oral diseases.
View Article and Find Full Text PDFA recent and quite promising technique for bone tissue engineering is the 3D printing, peculiarly regarding the production of high-quality scaffolds. The 3D printed scaffold strictly provides suitable characteristics for living cells, in order to induce treatment, reconstruction and substitution of injured tissue. The purpose of this work was to evaluate the behavior of the 3D scaffold based on Poly(L-co-D,L lactic acid-co-Trimethylene Carbonate) (PLDLA-TMC), which was designed in Solidworks™ software, projected in 3D Slicer™, 3D printed in filament extrusion, cultured with mesenchymal stem cells (MSCs) and tested and models.
View Article and Find Full Text PDFThe experimental use of poly (alcohol-vinyl) (PVA) as a skin curative is increasing widely. However, the use of this hydrogel is challenging due to its favorable properties for microbiota growth. The association with silver nanoparticles (AgNPs) as an antimicrobial agent turns the match for PVA as a dressing, as it focuses on creating a physical barrier to avoid wound dehydration.
View Article and Find Full Text PDFBioreactor systems that allow the simulation of in vivo variables in a controlled in vitro environment, were a great advance in the field of tissue engineering. Due to the dynamic-mechanical features that some tissues present, 3D-engineered constructs often do not exhibit the biomechanical properties of these native tissues. Thus, a successful approach must not only achieve tissue repair but also restore its function after injury.
View Article and Find Full Text PDFThe development of new technologies to produce three-dimensional and biocompatible scaffolds associated with high-end cell culture techniques have shown to be promising for the regeneration of tissues and organs. Some biomedical devices, as meniscus prosthesis, require high flexibility and tenacity and such features are found in polyurethanes which represent a promising alternative. The Poly(PCL-TMC)urethane here presented, combines the mechanical properties of PCL with the elasticity attributed by TMC and presents great potential as a cellular carrier in cartilage repair.
View Article and Find Full Text PDFThe search for new therapies and drugs that act as topical agents to relieve pain and control the inflammatory processes in burns always attracted interest in clinical trials. As an alternative to synthetic drugs, natural extracts are useful in the development of new strategies and formulations for improving the quality of life. The aim of this study was to develop a wound dressing using poly(l--d,l-lactic acid--trimethylene carbonate) (PLDLA-TMC) containing Raddi (S.
View Article and Find Full Text PDFCalcium phosphate cement (CPC) that is based on -tricalcium phosphate (-TCP) is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. fibers (WF) have been used to improve the mechanical strength of biomaterials.
View Article and Find Full Text PDFApis mellifera perform important pollination roles in agroecosystems. However, there is often intensive use of systemic pesticides in crops, which can be carried to the colony by forage bees through the collection of contaminated pollen and nectar. Inside the colony, pollen loads are stored by bees that add honey and several enzymes to this pollen.
View Article and Find Full Text PDFThe search for new therapies and drugs that act as topical agents to relieve pain and control the infectious processes in burns always attracted interest in clinical trials. As an alternative to synthetic drugs, the use of natural extracts is useful in the development of new strategies and formulations for improving the life quality. The aim of this study was to develop a wound dressing using Poly(L-co-D,L lactic acid-co-TMC) (PLDLA-co-TMC) containing aloe vera (AV).
View Article and Find Full Text PDFBackground: Tissue engineering is a promising alternative for the development of bone substitutes; for this purpose, three things are necessary: stem cells, a scaffold to allow tissue growth and factors that induce tissue regeneration.
Methods: To congregate such efforts, we used the bioresorbable and biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) as scaffold. For the osteoinductive factor, we used simvastatin (SIM), a drug with a pleiotropic effect on bone growth.
The behavior of lyotropic biomimetic systems in drug delivery was reviewed. These behaviors are influenced by drug properties, the initial water content, type of lyotropic liquid crystals (LLC), swell ability, drug loading rate, the presence of ions with higher or less kosmotropic or chaotropic force, and the electrostatic interaction between the drug and the lipid bilayers. The in vivo interaction between LCC-drugs, and the impact on the bioavailability of drugs, was reviewed.
View Article and Find Full Text PDFSeveral materials are commercially available as substitutes for skin. However, new strategies are needed to improve the treatment of skin wounds. In this study, we developed and characterized a new device consisting of poly(lactic-co-glycolic acid) (PLGA) and collagen associated with mesenchymal stem cells derived from human adipose tissue.
View Article and Find Full Text PDFHydroxyapatite (HA) has been investigated as a delivery system for antimicrobial and antibacterial agents to simultaneously stimulate bone regeneration and prevent infection. Despite evidence supporting the bactericidal efficiency of these HA carriers, few studies have focused on the effect of this association on bone regeneration. In this work, we evaluated the physico-chemical properties of hydroxyapatite microspheres loaded with chlorhexidine (CHX) at two different concentrations, 0.
View Article and Find Full Text PDFThe incorporation of zinc into the hydroxyapatite structure (ZnHA) has been proposed to stimulate osteoblast proliferation and differentiation. Another approach to improve cell adhesion and hydroxyapatite (HA) performance is coating HA with adhesive proteins or peptides such as RGD (arginine-glycine-aspartic acid). The present study investigated the adhesion of murine osteoblastic cells to non-sintered zinc-substituted HA disks before and after the adsorption of RGD.
View Article and Find Full Text PDFGiardia lamblia is a pathogenic protozoan presenting as the main characteristic, the trophozoite capacity to adhere in host intestinal epithelium, infecting mammals, including humans. The clinical treatment of this disease is based on metronidazole (Mz) that acts as an alternative electron acceptor, and its reduction promotes DNA impairment. In veterinary treatment, one of the best options is pyrantel pamoate (Pm), which the mode of action has not elucidated yet.
View Article and Find Full Text PDFArq Bras Endocrinol Metabol
August 2009
Objective: To evaluate whether differences are present in microvascular response to the schemia induced by dynamic videocapillaroscopy (VCD), through analysis of the measured capillar transverse segment area (CTSA) in patients with type 1 diabetes mellitus (T1DM).
Methods: The vascular reactivity of the CTSA was studied by VCD, using a reactive hyperemia test in 61 volunteers, being 31 healthy controls without diabetes family history (Group 1) and 30 patients with T1DM without complications (Group 2). The images were captured every two seconds, during reperfusion after one minute induced ischaemia, and they were analyzed by the program Studio Version 8 and Motic Image Plus.
The Giardia lamblia life cycle is characterized by two phases during which two major cell differentiation processes take place: encystation and excystation. During encystation, the trophozoites transform into cysts, the resistance form. Once ingested by a susceptible host, the cysts are stimulated to excyst in the stomach, and the excysted trophozoites adhere to the epithelium of the upper small intestine.
View Article and Find Full Text PDFThe protozoon Giardia lamblia infects millions of people worldwide, most of them in underdeveloped countries, where it is frequently a hyperendemic disease. The search for an effective anti-Giardia treatment has been intense, but recurrent infections, virulence factors, and drug resistance imposed obstacles in the achievement of an efficient medication. Most papers about drug effects in Giardia are related to the trophozoite form, although viable cysts, the infective forms, are continuously eliminated in the stools during the treatment.
View Article and Find Full Text PDF