Syst Biol (Stevenage)
June 2004
A systems biology approach is applied to gain a quantitative understanding of the integration of signalling by the small GTPase Ras. The Ras protein acts as a critical switch in response to signals that determine the cell's fate. In unstimulated cells, Ras switching between an inactive GDP-binding and active GTP-binding state is controlled by the intrinsic catalytic activities of Ras.
View Article and Find Full Text PDFStimulation of isolated hepatocytes with epidermal growth factor (EGF) causes rapid tyrosine phosphorylation of the EGF receptor (EGFR) and adapter/target proteins, which was monitored with 1 and 2 s resolution at 37, 20, and 4 degrees C. The temporal responses detected for multiple signaling proteins involve both transient and sustained phosphorylation patterns, which change dramatically at low temperatures. To account quantitatively for complex responses, we employed a mechanistic kinetic model of the EGFR pathway, formulated in molecular terms as cascades of protein interactions and phosphorylation and dephosphorylation reactions.
View Article and Find Full Text PDFDuring the past decade, our knowledge of molecular mechanisms involved in growth factor signaling has proliferated almost explosively. However, the kinetics and control of information transfer through signaling networks remain poorly understood. This paper combines experimental kinetic analysis and computational modeling of the short term pattern of cellular responses to epidermal growth factor (EGF) in isolated hepatocytes.
View Article and Find Full Text PDFBackground & Aims: Long-term ethanol intake suppresses liver regeneration in vivo and ethanol interferes with epidermal growth factor (EGF)-induced DNA synthesis in vitro. Therefore, the effects of long-term ethanol treatment on EGF-activated signaling reactions in rat hepatocytes were investigated.
Methods: Hepatocytes from long-term ethanol-fed rats and pair-fed controls were stimulated with EGF (0.
Background: The production of nitric oxide by type II inducible nitric oxide synthase (type II NOS) gene is controlled at least in part by transcriptional activation. Although the murine and human type II NOS genes share significant sequence homology, they differ in the induction stimuli required for activation.
Materials And Methods: The A549 human and murine RAW 264.
Hepatocyte growth factor (HGF) is the most potent mitogen identified for hepatocytes and is thought to be an important growth factor in the regulation of liver regeneration. Its effects are mediated through a tyrosine kinase receptor, the product of c-met proto-oncogene. One of the downstream signaling processes activated by HGF is phospholipase C-gamma.
View Article and Find Full Text PDFBiochim Biophys Acta
August 1994
The relationship between phospholipase D and C activation was studied in intact rat hepatocytes and rat liver plasma membranes. In intact hepatocytes, in the presence of ethanol, vasopressin, phorbol ester, and calcium independently stimulated phosphatidylethanol (PETH) formation, a specific marker of phospholipase D activity. Leupeptin (10-1500 microM) inhibited PETH formation induced by vasopressin, but was ineffective in response to phorbol ester or calcium.
View Article and Find Full Text PDFCa(2+)-dependent and protein kinase C-dependent mechanisms of phospholipase D (PLD) activation were studied in rat hepatocytes by measuring phosphatidylethanol (Peth) formation in the presence of ethanol. Stimulation of Peth formation by 12-O-tetradecanoyl-phorbol 13-acetate (TPA), vasopressin, or A23187 was inhibited by multiple protein kinase C inhibitors or by protein kinase C down-regulation, indicating that this enzyme is involved in the action of all these agents. A controlled elevation of the cytosolic Ca2+ concentration ([Ca2+]cyt) over the range of 0.
View Article and Find Full Text PDFJ Biol Chem
January 1994
Activation of phospholipase D (PLD) by receptor-coupled stimuli (vasopressin, ATP), phorbol esters, and Ca2+ ionophores was studied in isolated rat hepatocytes, double labeled with [3H]arachidonate and [14C]stearate. Phosphatidylethanol (Peth) was formed when cells were stimulated in the presence of ethanol. The effect of combinations of agonists was not additive, indicating that the same PLD isozyme(s) were activated.
View Article and Find Full Text PDFBiochim Biophys Acta
May 1993
The activation of phospholipase D in the kidney could be detected in vivo in rats treated with ethanol by the accumulation of phosphatidylethanol. Unilateral nephrectomy stimulated the activity of phospholipase D in the remaining kidney as indicated by an increase in the level of phosphatidylethanol. A significant increase in phosphatidylethanol level was observed as early as 5 min after contralateral nephrectomy and peak accumulation (200% of control) was observed after 15 min.
View Article and Find Full Text PDFThe effect of Ca2+ on the rate of pyruvate carboxylation was studied in liver mitochondria from control and glucagon-treated rats, prepared under conditions that maintain low Ca2+ levels (1-3 nmol/mg of protein). When the matrix-free [Ca2+] was low (less than 100 nM), the rate of pyruvate carboxylation was not significantly different in mitochondria from control and glucagon-treated rats. Accumulation of 5-8 nmol of Ca2+/mg, which increased the matrix [Ca2+] to 2-5 microM in both preparations, significantly enhanced pyruvate carboxylase flux by 20-30% in the mitochondria from glucagon-treated rats, but had little effect in control preparations.
View Article and Find Full Text PDFWe compared the internalization and intracellular sorting of epidermal growth factor receptor (EGF-R) and point mutant kinase-negative EGF-R separately expressed in NIH 3T3 cells lacking endogenous receptor. Both EGF-Rs internalized rapidly, but kinase-negative receptor was surface down-regulated only with monensin or at 20 degrees C. Furthermore, EGF internalized by mutant receptor alone was, in significant proportion, returned to the cell surface undegraded.
View Article and Find Full Text PDF