Publications by authors named "Mody I"

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions by using human patient iPSC-derived cortical- and hippocampal-ganglionic eminence assembloids to model Developmental and Epileptic Encephalopathy 13 (DEE-13), a condition arising from gain-of-function mutations in the gene.

View Article and Find Full Text PDF

Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD).

View Article and Find Full Text PDF
Article Synopsis
  • Acute brain slices are commonly used to study the central nervous system, but the impact of injury on microglial cells—the brain's immune system—remains unclear.
  • This study examines how microglial cells change over time and affect neuron function and network organization in these slices, showing that they respond to injury.
  • The findings indicate that microglia play a crucial role in maintaining neuronal network integrity, and their dysfunction leads to significant impairments in brain activity both in the lab and in living organisms.
View Article and Find Full Text PDF

Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD).

View Article and Find Full Text PDF

Subcortical white matter stroke (WMS) is a progressive disorder which is demarcated by the formation of small ischemic lesions along white matter tracts in the CNS. As lesions accumulate, patients begin to experience severe motor and cognitive decline. Despite its high rate of incidence in the human population, our understanding of the cause and outcome of WMS is extremely limited.

View Article and Find Full Text PDF

Introduction: Various methods have been used to determine the frequency components of seizures in scalp electroencephalography (EEG) and in intracortical recordings. Most of these methods rely on subjective or trial-and-error criteria for choosing the appropriate bandwidth for filtering the EEG or local field potential (LFP) signals to establish the frequency components that contribute most to the initiation and maintenance of seizure activity. The empirical mode decomposition (EMD) with the Hilbert-Huang transform is an unbiased method to decompose a time and frequency variant signal into its component non-stationary frequencies.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) are a promising approach to study neurological and neuropsychiatric diseases. Most methods to record the activity of these cells have major drawbacks as they are invasive or they do not allow single cell resolution. Genetically encoded voltage indicators (GEVIs) open the path to high throughput visualization of undisturbed neuronal activity.

View Article and Find Full Text PDF

Decreased expression of the δ subunit of the GABA receptor (GABAR) has been found in the dentate gyrus in several animal models of epilepsy and other disorders with increased excitability and is associated with altered modulation of tonic inhibition in dentate granule cells (GCs). In contrast, other GABAR subunits, including α4 and γ2 subunits, are increased, but the relationship between these changes is unclear. The goals of this study were to determine if viral transfection of δ subunits in dentate GCs could increase δ subunit expression, alter expression of potentially-related GABAR subunits, and restore more normal network excitability in the dentate gyrus in a mouse model of epilepsy.

View Article and Find Full Text PDF

To date, potential mechanisms of menopause-related memory and cognitive deficits have not been elucidated. Therefore, we studied brain oscillations, their phase-amplitude coupling, sleep and vigilance state patterns, running wheel use and other behavioural measures in a translationally valid mouse model of menopause, the 4-vinylcyclohexene-diepoxide-induced accelerated ovarian failure. After accelerated ovarian failure, female mice show significant alterations in brain rhythms, including changes in the frequencies of θ (5-12 Hz) and γ (30-120 Hz) oscillations, a reversed phase-amplitude coupling, altered coupling of hippocampal sharp-wave ripples to medial prefrontal cortical sleep spindles and reduced δ oscillation (0.

View Article and Find Full Text PDF

The specification of inhibitory neurons has been described for the mouse and human brain, and many studies have shown that pluripotent stem cells (PSCs) can be used to create interneurons in vitro. It is unclear whether in vitro methods to produce human interneurons generate all the subtypes found in brain, and how similar in vitro and in vivo interneurons are. We applied single-nuclei and single-cell transcriptomics to model interneuron development from human cortex and interneurons derived from PSCs.

View Article and Find Full Text PDF

Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations.

View Article and Find Full Text PDF

Voltage sensing with genetically expressed optical probes is highly desirable for large-scale recordings of neuronal activity and detection of localized voltage signals in single neurons. Most genetically encodable voltage indicators (GEVI) have drawbacks including slow response, low fluorescence, or excessive bleaching. Here we present a dark quencher GEVI approach (dqGEVI) using a Förster resonance energy transfer pair between a fluorophore glycosylphosphatidylinositol-enhanced green fluorescent protein (GPI-eGFP) on the outer surface of the neuronal membrane and an azo-benzene dye quencher (D3) that rapidly moves in the membrane driven by voltage.

View Article and Find Full Text PDF

Mossy cells (MCs) of the dentate gyrus (DG) are a major group of excitatory hilar neurons that are important for regulating activity of dentate granule cells. MCs are particularly intriguing because of their extensive longitudinal connections within the DG. It has generally been assumed that MCs in the dorsal and ventral DG have similar patterns of termination in the inner one-third of the dentate molecular layer.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and amyloid-beta (Aβ) depositions generated by the proteolysis of amyloid precursor protein (APP) in the brain. In APPNL-F mice, APP gene was humanized and contains two familial AD mutations, and APP-unlike other mouse models of AD-is driven by the endogenous mouse APP promoter. Similar to people without apparent cognitive dysfunction but with heavy Aβ plaque load, we found no significant decline in the working memory of adult APPNL-F mice, but these mice showed decline in the expression of normal anxiety.

View Article and Find Full Text PDF

During the postpartum period, the brain's inhibitory GABAA receptors may not recover in time following their reduced numbers during pregnancy. This is likely the cause of postpartum depression prevalent in ∼12% of childbearing women. A new therapy for this condition consists of administering a synthetic neurosteroid during the postpartum period to alleviate the mood disorder.

View Article and Find Full Text PDF

24S-hydroxycholesterol (24HC) is the major metabolic breakdown product of cholesterol in the brain. Among its other effects on neurons, 24HC modulates N-methyl-d-aspartate (NMDA or GluN) receptors, but our understanding of this mechanism is poor. We used whole-cell patch clamp recordings and various pharmacological approaches in mouse brain slices to record isolated NMDAR-mediated (I) tonic and evoked synaptic currents.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder that has become a compelling global public health concern. Besides pathological hallmarks such as extracellular amyloid plaques, intracellular neurofibrillary tangles (NFTs), and loss of neurons and synapses, clinical reports have shown that epileptiform activity, even seizures, can occur early in the disease. Aberrant synaptic and network activities as well as epileptiform discharges have also been observed in various mouse models of AD.

View Article and Find Full Text PDF

Potassium ions significantly contribute to the resting membrane potential of cells and, therefore, extracellular K concentration is a crucial regulator of cell excitability. Altered concentrations of extracellular K affect the resting membrane potential and cellular excitability by shifting the equilibria between closed, open and inactivated states for voltage-dependent ion channels that underlie action potential initiation and conduction. Hence, it is valuable to directly measure extracellular K dynamics in health and diseased states.

View Article and Find Full Text PDF

Variants of TREM2 are associated with Alzheimer's disease (AD). To study whether increasing TREM2 gene dosage could modify the disease pathogenesis, we developed BAC transgenic mice expressing human TREM2 (BAC-TREM2) in microglia. We found that elevated TREM2 expression reduced amyloid burden in the 5xFAD mouse model.

View Article and Find Full Text PDF

Bisphenol-A (BPA), a widely used synthetic compound in plastics, disrupts endocrine function and interferes with physiological actions of endogenous gonadal hormones. Chronic effects of BPA on reproductive function, learning and memory, brain structure, and social behavior have been intensively investigated. However, less is known about the influence of BPA on long-term potentiation (LTP), one of the major cellular mechanisms that underlie learning and memory.

View Article and Find Full Text PDF

The synapse specificity of long-term potentiation (LTP) ensures that no interference arises from inputs irrelevant to the memory to be encoded. In hippocampi of aged (21-28 months) mice, LTP was relayed to unstimulated synapses, blemishing its synapse specificity. Diminished levels of the K(+)/Cl(-) cotransporter KCC2 and a depolarizing GABAA receptor-mediated synaptic component following LTP were the most likely causes for the spreading of potentiation, unveiling mechanisms hindering information storage in the aged brain and identifying KCC2 as a potential target for intervention.

View Article and Find Full Text PDF

The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro.

View Article and Find Full Text PDF

Maternal depression has been shown to negatively impact offspring development. Investigation into the impact of maternal depression and offspring behavior has relied on correlative studies in humans. Further investigation into the underlying mechanisms has been hindered by the lack of useful animal models.

View Article and Find Full Text PDF

Objective: In temporal lobe epilepsy (TLE), pathologic high frequency oscillations (pHFOs, 200-600 Hz) are present in the hippocampus, especially the dentate gyrus (DG). The pHFOs emerge during a latent period prior to the onset of spontaneous generalized seizures. We used a unilateral suprahippocampal injection of kainic acid (KA) mouse model of TLE to characterize the properties of hippocampal pHFOs during epileptogenesis.

View Article and Find Full Text PDF

The forced-swim test (FST) is one of the most widely used rodent behavioral assays, in which the immobility of animals is used to assess the effectiveness of antidepressant drugs. However, the existing, and mostly arbitrary, criteria used for quantification could lead to biased results. Here we believe we uncovered new confounding factors, revealed new indices to interpret the behavior of mice and propose an unbiased means for quantification of the FST.

View Article and Find Full Text PDF