Publications by authors named "Modong Tan"

Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions.

View Article and Find Full Text PDF

Leukotriene B (LTB) receptor type 1 (BLT1) is abundant in phagocytic and immune cells and plays crucial roles in various inflammatory diseases. BLT1 is phosphorylated at several serine and threonine residues upon stimulation with the inflammatory lipid LTB Using Phos-tag gel electrophoresis to separate differentially phosphorylated forms of BLT1, we identified two distinct types of phosphorylation, basal and ligand-induced, in the carboxyl terminus of human BLT1. In the absence of LTB, the basal phosphorylation sites were modified to various degrees, giving rise to many different phosphorylated forms of BLT1.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are involved in many diseases and important biological phenomena; elucidating the mechanisms underlying regulation of their signal transduction potentially provides both novel targets for drug discovery and insight into living systems. A proton-sensing GPCR, ovarian cancer G protein-coupled receptor 1 (OGR1), has been reported to be related to acidosis and diseases that cause tissue acidification, but the mechanism of proton-induced activation of OGR1-mediated signal transduction in acidic conditions remains unclear. Here, pH-dependent intracellular trafficking of OGR1 was visualized in living leukocytes by a real-time fluorescence microscopic method based on sortase A-mediated pulse labeling of OGR1.

View Article and Find Full Text PDF

Molecular networks on the cytoplasmic faces of cellular plasma membranes are critical research topics in biological sciences and medicinal chemistry. However, the selective permeability of the cell membrane restricts the researchers from accessing to the intact intracellular factors on the membrane from the outside. Here, a microfluidic method to prepare cell membrane sheets was developed as a promising tool for direct examination of the cytoplasmic faces of cell membranes.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are important targets in medical and pharmaceutical research fields, because they play key roles in a variety of biological processes. Recently, intracellular trafficking of GPCRs involving endosomal internalization and recycling to the plasma membrane has been studied as a regulation mechanism for GPCR activities. However, the absence of a quantitative single-cell analysis method has hampered conditional GPCR trafficking studies and the possibility of gaining significant insights into the mechanism of regulation of GPCR signaling.

View Article and Find Full Text PDF

G2A (from G2 accumulation) receptor is a member of the proton-sensing G-protein coupled receptor (GPCR) family and induces signal transduction events that regulate the cell cycle, proliferation, oncogenesis, and immunity. The mechanism by which G2A-mediated signal transduction is regulated by the extracellular pH remains unresolved. Here, we first visualize the pH-dependent G2A distribution change in living cells by a sortase A-mediated pulse labeling technology: the short-peptide tag-fused human G2A on human embryo kidney HEK293T cell surfaces was labeled with a small fluorescent dye in the presence of lysophosphatidylcholine, and the labeled G2A was chased at acidic and neutral pHs in real time by microscope time course observations.

View Article and Find Full Text PDF