The possibility to control the effects of drugs in time and space represents an ideal condition for developing safer and more personalized therapies against different disorders. In this context, photopharmacology has paved the way for the use of light in the modulation of drugs activity. Our interest is directed to photo-switchable molecules, capable of interconverting between two different isoforms upon light irradiation.
View Article and Find Full Text PDFDrug resistance in cancer is determined by genetic mutations and adaptations of tumor cells to drug treatments, raising a challenge in the treatment of cancer. Factors such as prolonged drug exposure, genetic variability among patients, and tumor heterogeneity have been established as contributors to rising incidence of drug resistance, prompting ongoing research into alternative therapies and combination treatments to overcome this challenge. Monoamine oxidases (MAOs), including both isoforms MAO-A and MAO-B, are mitochondrial enzymes responsible for the catabolism of monoamine neurotransmitters such as dopamine, norepinephrine, and serotonin.
View Article and Find Full Text PDFIn pharmaceutical science and drug design the versatility of the pyrrolidine scaffold relating to spatial arrangement, synthetic accessibility and pharmacological profile is a largely explored and most likely interesting one. Nonetheless, few evidences suggest the pivotal role of pyrrolidine as scaffold for multipotent agents in neurodegenerative diseases. We then challenged the enrolling in the field of Alzheimer disease of so far not ravelled targets of this chemical cliché with a structure based and computer-aided design strategy focusing on multi-target action, versatile synthesis as well as pharmacological safeness.
View Article and Find Full Text PDFPrevious studies have shown that some lamellarin-resembling annelated azaheterocyclic carbaldehydes and related imino adducts, sharing the 1-phenyl-5,6-dihydropyrrolo[2,1-]isoquinoline (1-Ph-DHPIQ) scaffold, are cytotoxic in some tumor cells and may reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp). Herein, several novel substituted 1-Ph-DHPIQ derivatives were synthesized which carry carboxylate groups (COOH, COOEt), nitrile (CN) and Mannich bases (namely, morpholinomethyl derivatives) in the C2 position, as replacements of the already reported aldehyde group. They were evaluated for antiproliferative activity in four tumor cell lines (RD, HCT116, HeLa, A549) and for the ability of selectively inhibiting P-gp-mediated MDR.
View Article and Find Full Text PDFEur J Med Chem
April 2024
Due to the putative role of butyrylcholinesterase (BChE) in regulation of acetylcholine levels and functions in the late stages of the Alzheimer's disease (AD), the potential of selective inhibitors (BChEIs) has been envisaged as an alternative to administration of acetylcholinesterase inhibitors (AChEIs). Starting from our recent findings, herein the synthesis and in vitro evaluation of cholinesterase (ChE) inhibition of a novel series of some twenty 3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one derivatives, bearing at the indole nitrogen diverse alkyl-bridged 4-arylalkylpiperazin-1-yl chains, are reported. The length of the spacers, as well as the type of arylalkyl group affected the enzyme inhibition potency and BChE/AChE selectivity.
View Article and Find Full Text PDFACS Chem Neurosci
March 2024
Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation.
View Article and Find Full Text PDFMonoamine oxidases A and B (MAO A, B) are ubiquitous enzymes responsible for oxidative deamination of amine neurotransmitters and xenobiotics. Despite decades of studies, MAO inhibitors (MAOIs) find today limited therapeutic space as second-line drugs for the treatment of depression and Parkinson's disease. In recent years, a renewed interest in MAOIs has been raised up by several studies investigating the role of MAOs, particularly MAO A, in tumor insurgence and progression, and the efficacy of MAOIs as coadjutants in the therapy of chemoresistant tumors.
View Article and Find Full Text PDFPolyphenolic compounds, encompassing flavonoids (e.g., quercetin, rutin, and cyanidin) and non-flavonoids (e.
View Article and Find Full Text PDFBased on previous finding showing 2,3,6,11-tetrahydro-1H-azocino[4,5-b]indole as suitable scaffold of novel inhibitors of acetylcholinesterase (AChE), a main target of drugs for the treatment of Alzheimer's disease and related dementias, herein we investigated diverse newly and previously synthesized β-enamino esters (and ketones) derivatives of 1,4,7,8-tetrahydroazocines (and some azonines) fused with benzene, 1H-indole, 4H-chromen-4-one and pyrimidin-4(3H)-one. Twenty derivatives of diversely annelated eight-to-nine-membered azaheterocyclic ring, prepared through domino reaction of the respective tetrahydropyridine and azepine with activated alkynes, were assayed for the inhibitory activity against AChE and butyrylcholinesterase (BChE). As a major outcome, compound 7c, an alkylamino derivative of tetrahydropyrimido[4,5-d]azocine, was found to be a highly potent BChE-selective inhibitor, which showed a noncompetitive/mixed-type inhibition mechanism against human BChE with single digit nanomolar inhibition constant (K = 7.
View Article and Find Full Text PDFThe multitarget therapeutic strategy, as opposed to the more traditional 'one disease-one target-one drug', may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer's disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1-inden-1-one (), which in the isomeric form (and about tenfold less in the UV-B photo-induced isomer ) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs - with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity.
View Article and Find Full Text PDFEur J Med Chem
November 2023
Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT receptor ligands.
View Article and Find Full Text PDFAbout twenty molecules sharing 1-chromeno[3,2-]pyridine as the scaffold and differing in the degree of saturation of the pyridine ring, oxidation at C10, 1-phenylethynyl at C1 and 1-indol-3-yl fragments at C10, as well as a few small substituents at C6 and C8, were synthesized starting from 1,2,3,4-tetrahydro-2-methylchromeno[3,2-]pyridin-10-ones (1,2,3,4-THCP-10-ones, ) or 2,3-dihydro-2-methyl-1-chromeno[3,2-]pyridines (2,3-DHPCs, ). The newly synthesized compounds were tested as inhibitors of the human isoforms of monoamine oxidase (MAO A and B) and cholinesterase (AChE and BChE), and the following main SARs were inferred: (i) The 2,3-DHCP derivatives inhibit MAO A (IC about 1 μM) preferentially; (ii) the 1,2,3,4-THCP-10-one , bearing the phenylethynyl fragment at C1, returned as a potent MAO B inhibitor (IC 0.51 μM) and moderate inhibitor of both ChEs (ICs 7-8 μM); (iii) the 1-indol-3-yl fragment at C10 slightly increases the MAO B inhibition potency, with the analog achieving MAO B IC of 3.
View Article and Find Full Text PDFAlzheimer's Disease (AD) is characterized by a progressive cholinergic neurotransmission imbalance, with a decrease of acetylcholinesterase (AChE) activity followed by a significant increase of butyrylcholinesterase (BChE) in the later AD stages. BChE activity is also crucial for the development of Aβ plaques, the main hallmarks of this pathology. Moreover, systemic copper dyshomeostasis alters neurotransmission leading to AD.
View Article and Find Full Text PDFTransformations of 1-methoxymethylethynyl substituted isoquinolines triggered by terminal alkynes in alcohols were studied and new 3-benzazecine-containing compounds synthesized, such as 6-methoxymethyl-3-benzazecines incorporating an endocyclic C6-C8 allene fragment and the -ylidene derivatives 6-methoxymethylene-3-benzazecines. The reaction mechanisms were investigated and a preliminary in vitro screening of their potential inhibitory activities against human acetyl- and butyrylcholinesterases (AChE and BChE) and monoamine oxidases A and B (MAO-A and MAO-B) showed that the allene compounds were more potent than the corresponding -ylidene ones as selective AChE inhibitors. Among the allenes, (R = CHOMe) was found to be a competitive AChE inhibitor with a low micromolar inhibition constant value ( = 4.
View Article and Find Full Text PDFHansch-type regression analysis enables the derivation of quantitative structure-activity relationship (QSAR) equations correlating bioactivity data with physicochemical parameters accounting for hydrophobicity, electronic properties, and steric effects of molecules or functional groups (substituents). Two datasets of MAO A and B inhibitors were enrolled in prototypical workflows employing multiparametric stepwise regression analysis, which includes linear and nonlinear (generally quadratic) terms. The optimal choice of variables (and/or combinations thereof) along with statistical validation yielded two robust equations describing MAO B potency and B/A selectivity, which included three and one parameter(s), respectively, and explained more than 80% of y-variance (r) with low standard deviation (s) and good statistical significance (F, Fisher value).
View Article and Find Full Text PDFCoagulation factor Xa (fXa) and thrombin (thr) are widely expressed in pulmonary tissues, where they may catalyze, together with the transmembrane serine protease 2 (TMPRSS2), the coronaviruses spike protein (SP) cleavage and activation, thus enhancing the SP binding to ACE2 and cell infection. In this study, we evaluate in vitro the ability of approved (i.e.
View Article and Find Full Text PDFNeurodegenerative diseases are multifactorial disorders characterized by protein misfolding, oxidative stress, and neuroinflammation, finally resulting in neuronal loss and cognitive dysfunctions. Nowadays, an attractive strategy to improve the classical treatments is the development of multitarget-directed molecules able to synergistically interact with different enzymes and/or receptors. In addition, an interesting tool to refine personalized therapies may arise from the use of bioactive species able to modify their activity as a result of light irradiation.
View Article and Find Full Text PDFThe rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure-activity relationship (SAR) studies aimed at investigating - or -benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments.
View Article and Find Full Text PDFBioisosteric H/F or CHOH/CFH replacement was introduced in coumarin derivatives previously characterized as dual AChE-MAO B inhibitors to probe the effects on both inhibitory potency and drug-likeness. Along with in vitro screening, we investigated early-ADME parameters related to solubility and lipophilicity (Sol, CHI, log ), oral bioavailability and central nervous system (CNS) penetration (PAMPA-HDM and PAMPA-blood-brain barrier (BBB) assays, Caco-2 bidirectional transport study), and metabolic liability (half-lives and clearance in microsomes, inhibition of CYP3A4). Both specific and nonspecific tissue toxicities were determined in SH-SY5Y and HepG2 lines, respectively.
View Article and Find Full Text PDFRecently, the direct thrombin (thr) inhibitor dabigatran has proven to be beneficial in animal models of Alzheimer's disease (AD). Aiming at discovering novel multimodal agents addressing thr and AD-related targets, a selection of previously and newly synthesized potent thr and factor Xa (fXa) inhibitors were virtually screened by the Multi-fingerprint Similarity Searching aLgorithm (MuSSeL) web server. The -phenyl-1-(pyridin-4-yl)piperidine-4-carboxamide derivative , which has already been experimentally shown to inhibit thr with a K value of 6 nM, has been flagged by a new, upcoming release of MuSSeL as a binder of cholinesterase (ChE) isoforms (acetyl- and butyrylcholinesterase, AChE and BChE), as well as thr, fXa, and other enzymes and receptors.
View Article and Find Full Text PDFMarine alkaloids belonging to the lamellarins family, which incorporate a 5,6-dihydro-1-phenylpyrrolo[2,1-]isoquinoline (DHPPIQ) moiety, possess various biological activities, spanning from antiviral and antibiotic activities to cytotoxicity against tumor cells and the reversal of multidrug resistance. Expanding a series of previously reported imino adducts of DHPPIQ 2-carbaldehyde, novel aliphatic and aromatic Schiff bases were synthesized and evaluated herein for their cytotoxicity in five diverse tumor cell lines. Most of the newly synthesized compounds were found noncytotoxic in the low micromolar range (<30 μM).
View Article and Find Full Text PDFNature-inspired, bridged polycyclic molecules share low similarity with currently available drugs, containing preferentially planar and/or achiral moieties. This "Escape from Flatland" scenario, aimed at exploring pharmacological properties of atypical molecular scaffolds, finds interest in synthetic routes leading to tridimensional-shaped molecules. Herein we report on the synthesis of -bridged cyclopenta[]indene derivatives, achieved through microwave-assisted thermal rearrangement of allene 3-benzazecines with high diastereoselectivity.
View Article and Find Full Text PDFThirty-six novel indole-containing compounds, mainly 3-(2-phenylhydrazono) isatins and structurally related 1-indole-3-carbaldehyde derivatives, were synthesized and assayed as inhibitors of beta amyloid (Aβ) aggregation, a hallmark of pathophysiology of Alzheimer's disease. The newly synthesized molecules spanned their IC values from sub- to two-digit micromolar range, bearing further information into structure-activity relationships. Some of the new compounds showed interesting multitarget activity, by inhibiting monoamine oxidases A and B.
View Article and Find Full Text PDF