Publications by authors named "Modassir Choudhry"

The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%).

View Article and Find Full Text PDF

Despite rapid clinical translation of COVID-19 vaccines in response to the global pandemic, an opportunity remains for vaccine technology innovation to address current limitations and meet challenges of inevitable future pandemics. We describe a universal vaccine cell (UVC) genetically engineered to mimic natural physiological immunity induced upon viral infection of host cells. Cells engineered to express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike as a representative viral antigen induce robust neutralizing antibodies in immunized non-human primates.

View Article and Find Full Text PDF

Background: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice.

View Article and Find Full Text PDF

The a priori T cell repertoire and immune response against SARS-CoV-2 viral antigens may explain the varying clinical course and prognosis of patients having a mild COVID-19 infection as opposed to those developing more fulminant multisystem organ failure and associated mortality. Using a novel SARS-Cov-2-specific artificial antigen presenting cell (aAPC), coupled with a rapid expansion protocol (REP) as practiced in tumor infiltrating lymphocytes (TIL) therapy, we generate an immune catalytic quantity of Virus Induced Lymphocytes (VIL). Using T cell receptor (TCR)-specific aAPCs carrying co-stimulatory molecules and major histocompatibility complex (MHC) class-I immunodominant SARS-CoV-2 peptide-pentamer complexes, we expand virus-specific VIL derived from peripheral blood mononuclear cells (PBMC) of convalescent COVID-19 patients up to 1000-fold.

View Article and Find Full Text PDF

Recombinant adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last 2 decades, research focused primarily on the characterization and isolation of new , genes resulting in hundreds of natural and engineered AAV capsid variants, while the gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the gene from AAV serotype 2 (AAV2) enables the single-stranded DNA packaging of recombinant genomes into most AAV serotype and engineered capsids.

View Article and Find Full Text PDF

Adeno-associated viruses (AAV) have attracted significant attention in the field of gene and cell therapy due to highly effective delivery of therapeutic genes into human cells. The ability to generate recombinant AAV vectors compromised of unique or substituted protein sequences has led to the development of capsid variants with improved therapeutic properties. Seeking novel AAV vectors capable of enhanced transduction for therapeutic applications, we have developed a series of unique capsid variants termed AAV (AAV-XV) derived from chimeras of AAV12 VP1/2 sequences and the VP3 sequence of AAV6.

View Article and Find Full Text PDF