Publications by authors named "Mochrie S"

Background: Inhomogeneous patterns of chromatin-chromatin contacts within 10-100-kb-sized regions of the genome are a generic feature of chromatin spatial organization. These features, termed topologically associating domains (TADs), have led to the loop extrusion factor (LEF) model. Currently, our ability to model TADs relies on the observation that in vertebrates TAD boundaries are correlated with DNA sequences that bind CTCF, which therefore is inferred to block loop extrusion.

View Article and Find Full Text PDF

Chromatin is a polymer complex of DNA and proteins that regulates gene expression. The three-dimensional (3D) structure and organization of chromatin controls DNA transcription and replication. High-throughput chromatin conformation capture techniques generate Hi-C maps that can provide insight into the 3D structure of chromatin.

View Article and Find Full Text PDF

Biomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains.

View Article and Find Full Text PDF

Chromatin polymer dynamics are commonly described using the classical Rouse model. The subsequent discovery, however, of intermediate-scale chromatin organization known as topologically associating domains (TADs) in experimental Hi-C contact maps for chromosomes across the tree of life, together with the success of loop extrusion factor (LEF) model in explaining TAD formation, motivates efforts to understand the effect of loops and loop extrusion on chromatin dynamics. This paper seeks to fulfill this need by combining LEF-model simulations with extended Rouse-model polymer simulations to investigate the dynamics of chromatin with loops and dynamic loop extrusion.

View Article and Find Full Text PDF

Fluorescence microscopy enables specific visualization of proteins in living cells and has played an important role in our understanding of the protein subcellular location and function. Some proteins, however, show altered localization or function when labeled using direct fusions to fluorescent proteins, making them difficult to study in live cells. Additionally, the resolution of fluorescence microscopy is limited to ∼200 nm, which is 2 orders of magnitude larger than the size of most proteins.

View Article and Find Full Text PDF

The buckling instabilities of core-shell systems, comprising an interior elastic sphere, attached to an exterior shell, have been proposed to underlie myriad biological morphologies. To fully discuss such systems, however, it is important to properly understand the elasticity of the spherical core. Here, by exploiting well-known properties of the solid harmonics, we present a simple, direct method for solving the linear elastic problem of spheres and spherical voids with surface deformations, described by a real spherical harmonic.

View Article and Find Full Text PDF

We present and analyze video-microscopy-based single-particle-tracking measurements of the budding yeast (Saccharomyces cerevisiae) membrane protein, Pma1, fluorescently labeled either by direct fusion to the switchable fluorescent protein, mEos3.2, or by a novel, light-touch, labeling scheme, in which a 5 amino acid tag is directly fused to the C-terminus of Pma1, which then binds mEos3.2.

View Article and Find Full Text PDF

The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes.

View Article and Find Full Text PDF

Chromatin loop extrusion by structural maintenance of chromosome (SMC) complexes is thought to underlie intermediate-scale chromatin organization inside cells. Motivated by a number of experiments suggesting that nucleosomes may block loop extrusion by SMCs, such as cohesin and condensin complexes, we introduce and characterize theoretically a composite loop extrusion factor (composite LEF) model. In addition to an SMC complex that creates a chromatin loop by encircling two threads of DNA, this model includes a remodeling complex that relocates or removes nucleosomes as it progresses along the chromatin, and nucleosomes that block SMC translocation along the DNA.

View Article and Find Full Text PDF

Several recent experiments, including our own experiments in the fission yeast, Schizosaccharomyces pombe, have characterized the motions of gene loci within living nuclei by measuring the locus position over time, then proceeding to obtain the statistical properties of this motion. To address the question of whether a population of such single-particle tracks, obtained from many different cells, corresponds to a single mode of diffusion, we derive theoretical equations describing the probability distribution of the displacement covariance, assuming the displacement itself is a zero-mean multivariate Gaussian random variable. We also determine the corresponding theoretical means, variances, and third central moments.

View Article and Find Full Text PDF

PAINT (points accumulation for imaging in nanoscale topography) refers to methods that achieve the sparse temporal labeling required for super-resolution imaging by using transient interactions between a biomolecule of interest and a fluorophore. There have been a variety of different implementations of this method since it was first described in 2006. Recent papers illustrate how transient peptide-protein interactions, rather than small molecule binding or DNA oligonucleotide duplex formation, can be employed to perform PAINT-based single molecule localization microscopy (SMLM).

View Article and Find Full Text PDF

We present LIVE-PAINT, a new approach to super-resolution fluorescent imaging inside live cells. In LIVE-PAINT only a short peptide sequence is fused to the protein being studied, unlike conventional super-resolution methods, which rely on directly fusing the biomolecule of interest to a large fluorescent protein, organic fluorophore, or oligonucleotide. LIVE-PAINT works by observing the blinking of localized fluorescence as this peptide is reversibly bound by a protein that is fused to a fluorescent protein.

View Article and Find Full Text PDF

Regulation of membrane receptor mobility tunes cellular response to external signals, such as in binding of B cell receptors (BCR) to antigen, which initiates signaling. However, whether BCR signaling is regulated by BCR mobility, and what factors mediate this regulation, are not well understood. Here we use single molecule imaging to examine BCR movement during signaling activation and a novel machine learning method to classify BCR trajectories into distinct diffusive states.

View Article and Find Full Text PDF

Nuclear morphology is indicative of cellular health in many contexts. In order to robustly and quantitatively measure nuclear size and shape, numerous experimental methods leveraging fluorescence microscopy have been developed. While these methods are useful for quantifying two-dimensional morphology, they often fail to accurately represent the three-dimensional structure of the nucleus, thus omitting important spatial and volumetric information.

View Article and Find Full Text PDF

Single-particle tracking (SPT) enables the ability to noninvasively probe the diffusive motions of individual proteins inside living cells at sub-diffraction-limit resolution. The stochastic motions of diffusing Rho GTPases encode information concerning its interactions with binding partners and with its local environment. By identifying Rho GTPases' diffusive states, insight can thus be gained into the spatiotemporal in vivo biochemistry inside live cells at a single-molecule resolution.

View Article and Find Full Text PDF

We present a novel method to fluorescently label proteins, post-translationally, within live Saccharomycescerevisiae. The premise underlying this work is that fluorescent protein (FP) tags are less disruptive to normal processing and function when they are attached post-translationally, because target proteins are allowed to fold properly and reach their final subcellular location before being labeled. We accomplish this post-translational labeling by expressing the target protein fused to a short peptide tag (SpyTag), which is then covalently labeled in situ by controlled expression of an open isopeptide domain (SpyoIPD, a more stable derivative of the SpyCatcher protein) fused to an FP.

View Article and Find Full Text PDF

In order to apply optical tweezers-based force measurements within an uncharacterized viscoelastic medium such as the cytoplasm of a living cell, a quantitative calibration method that may be applied in this complex environment is needed. We describe an improved version of the fluctuation-dissipation-theorem calibration method, which has been developed to perform in situ calibration in viscoelastic media without prior knowledge of the trapped object. Using this calibration procedure, it is possible to extract values of the medium's viscoelastic moduli as well as the force constant describing the optical trap.

View Article and Find Full Text PDF

The stochastic motions of a diffusing particle contain information concerning the particle's interactions with binding partners and with its local environment. However, an accurate determination of the underlying diffusive properties, beyond normal diffusion, has remained challenging when analyzing particle trajectories on an individual basis. Here, we introduce the maximum-likelihood estimator (MLE) for confined diffusion and fractional Brownian motion.

View Article and Find Full Text PDF

Many aspects of chromatin biology are influenced by the nuclear compartment in which a locus resides, from transcriptional regulation to DNA repair. Further, the dynamic and variable localization of a particular locus across cell populations and over time makes analysis of a large number of cells critical. As a consequence, robust and automatable methods to measure the position of individual loci within the nuclear volume in populations of cells are necessary to support quantitative analysis of nuclear position.

View Article and Find Full Text PDF

Many organisms in nature have evolved sophisticated cellular mechanisms to produce photonic nanostructures and, in recent years, diverse crystalline symmetries have been identified and related to macroscopic optical properties. However, because we know little about the distributions of domain sizes, the orientations of photonic crystals, and the nature of defects in these structures, we are unable to make the connection between the nanostructure and its development and functionality. We report on nondestructive studies of the morphology of chitinous photonic crystals in butterfly wing scales.

View Article and Find Full Text PDF

Fluorescence imaging is a powerful tool to study protein function in living cells. Here, we introduce a novel imaging strategy that is fully genetically encodable, does not require the use of exogenous substrates, and adds a minimally disruptive tag to the protein of interest (POI). Our method was based on a set of designed tetratricopeptide repeat affinity proteins (TRAPs) that specifically and reversibly interact with a short, extended peptide tag.

View Article and Find Full Text PDF

In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation.

View Article and Find Full Text PDF

Resolving distinct biochemical interaction states when analyzing the trajectories of diffusing proteins in live cells on an individual basis remains challenging because of the limited statistics provided by the relatively short trajectories available experimentally. Here, we introduce a novel, machine-learning based classification methodology, which we call perturbation expectation-maximization (pEM), that simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors which collectively result from distinct biochemical interactions. We validate the performance of pEM in silico and demonstrate that pEM is capable of uncovering the proper number of underlying diffusive states with an accurate characterization of their diffusion properties.

View Article and Find Full Text PDF

The diverse morphologies of animal tissues are underlain by different configurations of adherent cells and extracellular matrix (ECM). Here, we elucidate a cross-scale mechanism for tissue assembly and ECM remodeling involving Cadherin 2, the ECM protein Fibronectin, and its receptor Integrin α5. Fluorescence cross-correlation spectroscopy within the zebrafish paraxial mesoderm mesenchyme reveals a physical association between Integrin α5 on adjacent cell membranes.

View Article and Find Full Text PDF