Publications by authors named "Mocarski E"

The herpes simplex virus genome consists of two components, L and S, which invert relative to each other during viral replication. The a sequence is present at the genomic termini in direct orientation and at the L-S junction in inverted orientation. Previously, we showed that insertion of a fragment spanning the L-S junction into the viral genome causes additional inversions.

View Article and Find Full Text PDF

The genome of herpes simplex virus 1 or 2 consists of two components, L and S, which invert relative to each other during infection. As a result, viral DNA consists of four equimolar populations of molecules differing solely in the relative orientations of the L and S components. Previous studies have shown that the a sequences, located in the same orientation at the genomic termini and in inverted orientation at the L-S junction, play a key role in the inversion of L and S components.

View Article and Find Full Text PDF

The genome of herpes simplex virus-1 consists of two covalently linked components, L and S, that invert relative to each other. The L and S components consist of unique DNA sequences bracketed by inverted repeats. The inverted repeats of the L component are designated ab and b' a' and those of the S component are designated a' c' and ca.

View Article and Find Full Text PDF

We have developed a technique for the insertion of any DNA fragment into the herpes simplex virus (HSV) genome at specific sites. This technique was used to resolve a specific problem concerning the isomerization of the HSV genome. Briefly, HSV DNA consists of four isomers differing in the orientation of two covalently linked components, L and S, relative to each other.

View Article and Find Full Text PDF

Over 95% of the herpes simplex virus type 1 (strain F) DNA sequences have been cloned as BamHI fragments in the pBR322 plasmid. With one exception, all of the cloned fragments have the same electrophoretic mobilities and restriction enzyme cleavage sites as do the authentic fragments derived from the BamHI digests of the viral genome. The exception is the BamHI B fragment mapping at the right end of L component in the prototype arrangement of the DNA.

View Article and Find Full Text PDF

A small percentage of human fibroblast cells survived high-multiplicity infection by cytomegalovirus and were isolated as persistently infected cultures. Approximately 30% of the cells were in the productive phase of infection, since virus-specific structural antigens and virions were associated with these cells. The remaining cells contained neither viral structural antigens nor particles.

View Article and Find Full Text PDF

The majority of DNA molecules associated with plaque-purified, low-multiplicity-passaged human cytomegalovirus (Towne strain) had a molecular weight of approximately 150 x 10(6) and a molecular complexity of approximately 140 x 10(6). Serial high-multiplicity passage resulted in the production of defective cytomegalovirions. An accumulation of smaller DNA molecules packaged into virions was directly correlated with a decrease in infectivity and an increase in the particle-to-PFU ratio.

View Article and Find Full Text PDF

Early after infection of cells with cytomegalovirus, the membranes were modified with respect to both glycoprotein composition and immunological specificity. Virus-specified antigens were inserted into the plasma membrane at 24 h after infection, as much as 2 days before virion and dense body maturation. Although at least four virus-induced glycoproteins were synthesized and bound to plasma and microsomal membranes between 20 and 24 h after infection, virus-specified antigen accumulated primarily on the plasma membrane.

View Article and Find Full Text PDF