A series of novel coumarin-thiazoles was designed and synthesized as a possible CDK2 inhibitor with anticancer activity with low toxicity. The design relied on having hydrazine thiazole or its open-form thioamide to form H-bonds with the ATP binding site while coumarin maintained the crucial hydrophobic interactions for proper fitting. The biological evaluation revealed that the hydroxycoumarin-thiazole derivative 6c demonstrated the best inhibition with HepG2 and HCT116 IC 2.
View Article and Find Full Text PDFIn this study, phenol formaldehyde-montmorillonite (PF-MMT) was prepared and used for lead ion (Pb) adsorption. Batch adsorption experiments were conducted to determine the optimal conditions. The calculated adsorption equilibrium () revealed that pseudo-second-order (PSO) and Langmuir isotherm models best fit the experimental data, suggesting chemisorption as the main mechanism.
View Article and Find Full Text PDFIn this study, we report the successful synthesis of a phenol-formaldehyde-pyrazole (PF-PYZ) compound through the surface functionalization of phenol-formaldehyde (PF) with pyrazole (PYZ). The resulting mixture was subjected to comprehensive characterization using a range of analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The newly synthesized PF-PYZ material effectively removes Cr(VI) ions.
View Article and Find Full Text PDFThis study synthesizes and characterizes a series of disperse dyes based on azo Schiff bases, compounds -. Their structures were identified using various analytical techniques, such as FT-IR, H/C NMR, and mass spectrometry. The study's primary objective was to investigate the behavior of disperse dyes - when used for dyeing polyester fabrics under different conditions, including variations in time, temperature, shade, and pH.
View Article and Find Full Text PDFLike most phosphinic acids, the potent and selective RXP03 inhibitor of different MMPs exhibited moderate absorption and low bioavailability, which impaired its use. In an unprecedented attempt, we present an interesting synthetic approach to a new class of phosphinate prodrug, glycosyl ester of RXP03, to provide a potentially improved blood-brain barrier (BBB) behavior compared to the former lead compound RXP03. To validate this speculation, a predictive study for permeability enhancer of glycosyl ester of RXP03 showed encouraging insights to improve drug delivery across biological barriers.
View Article and Find Full Text PDFLung targeting was developed by synthesising pyrazolone derivatives 6a-f under solvent-free and thermal conditions by reacting azo coumarins 4a-c with hydrazines 5a and b using maltose as a biodegradable catalyst. Different spectral data characterized the synthesized agents as proton-NMR, FT-IR, and mass spectra. Direct radioiodination with iodine-131 was performed and optimized to reach the highest radiochemical purities (92 ± 0.
View Article and Find Full Text PDFThe inhibitory impact of the two synthesized pyrazole derivatives ( and ) toward metallic and microbial corrosion was investigated. Using open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy, it was possible to determine their ability to prevent the corrosion of C-steel in 1 M HCl, which was significantly enhanced with increasing concentration (ex. 93%).
View Article and Find Full Text PDFA novel series of 2,4,5- and 2,3,4-trisubstituted thiazole hybrids with 1,3,4-thiadiazolylbenzenesulfonamide was designed following the tail approach as possible hCAIX inhibitors. The key intermediate 1 was condensed with thiosemicarbazide 2a to give 1,3,4-thiadiazolylthiosemicarbazone 3, which upon hetero-cyclization with substituted α-haloketones and esters afforded 2,4,5-trisubstituted thiazole-1,3,4-thiadiazole conjugates 4-8. Furthermore, the trisubstituted thiazole-1,3,4-thiadiazole hybrids 12a-d were synthesized the regioselective cyclization of 4-substituted-1,3,4-thiadiazolylthiosemicarbazones with phenacyl bromide.
View Article and Find Full Text PDFFormaldehyde has become a prominent topic of interest because of its simple molecular structure, release from various compounds in the near vicinity of humans, and associated hazards. Thus, several researchers designed sophisticated instrumentations for formaldehyde detection that exhibit real-time sensing properties and are cost-effective and portable with high detection limits. On these grounds, this review is centered on an analysis of optical chemosensors for formaldehyde that specifically fall under the broad spectrum of organic probes.
View Article and Find Full Text PDFToward finding potential and novel anticancer agents, we designed and prepared novel differently substituted unsymmetrical azine-modified thiadiazole sulfonamide derivatives using the "combi-targeting approach". An efficient procedure for synthesizing the designed compounds starts with 5-acetyl-3--(4-sulfamoylphenyl)-2-imino-1,3,4-thiadi-azoline 4. The / configuration for compound 5 was investigated based on spectral analysis combined with quantum mechanical calculation applying the DFT-B3LYP method and 6-31G(d) basis set.
View Article and Find Full Text PDFIn drug discovery, molecular modification over the lead molecule is often crucial for the development of a drug. Herein, we report the molecular hybridization design of a novel - hybrid linking the parent compound, phosphinic peptide , with a proline analogue. The presented synthetic route is straightforward and produces the desired product in moderate yield.
View Article and Find Full Text PDFA rapid and new synthetic route for N,N'-di-o-tolyl guanidine (DTG) synthesis from cheap materials is reported. The performance of DTG as an excellent inhibitor for delaying copper (Cu) corrosion with an efficiency higher than 98% at 20 × 10 M in an acidic solution was investigated via electrochemical measurements. These measurements included PDP, EFM, and EIS spectroscopy.
View Article and Find Full Text PDFA novel TEA-catalyzed sugar-esterification of phosphinic acids was used as a general and efficient approach for the synthesis of a variety of phosphinates without any transition metal. The high efficiency of the current methodology and a convenient experimental procedure compensate for the moderate yields obtained. Another advantage is that the reaction tolerates different substituents attached to the phosphinic acids and the sugar moieties alongside the ease of isolation of the product.
View Article and Find Full Text PDFThis review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives. Also, chemical reactions of 3-(bromoacetyl)coumarins as versatile building blocks in the preparation of critical polyfunctionalized heterocyclic systems and other industrially significant scaffolds are described. Recent advances of 3-(bromoacetyl)coumarins as attractive starting points towards a wide scale of five and six-membered heterocyclic systems such as thiophenes, imidazoles, pyrazoles, thiazoles, triazoles, pyrans, pyridines, thiadiazins as well as fused heterocyclic systems have been reported.
View Article and Find Full Text PDFThe inhibitory impact of low-cost synthesized pyrazoline derivatives named series ( and ) on the corrosion of API 5L X60 carbon steel in 5 M HCl was inspected to serve as corrosion inhibitors against such a solution for its usage in the oilfield well acidization process. Also, the same compounds were unitized as biocides for sulfate-reducing bacteria (SRBs) to inhibit the microbial-induced corrosion effect. This study was conducted via several electrochemical techniques, namely, electrochemical potentiodynamic polarization (EP) and electrochemical impedance spectroscopy (EIS), in addition to computational density functional theory (DFT).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2021
In the current study, novel thin films of a phenol-based push-pull azo dye, 2-acetyl-4-(4-chloro-phenylazo) phenol (ACAP), with tunable optical and electronic properties were designed, synthesized and characterized for UV photodetection applications. The crystalline structure and morphological features of the thermally evaporated ACAP thin films are investigated. The fabricated thin films exhibit an amorphous-like structure with low-intensity crystalline regions of average crystallite size of about 29.
View Article and Find Full Text PDFThe chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik-Fields, Mannich, Arbuzov, Michaelis-Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks.
View Article and Find Full Text PDFPhosphinic acid derivatives exhibit diverse biological activities and a high degree of structural diversity, rendering them a versatile tool in the development of new medicinal agents. Pronounced recent progress, coupled with previous research findings, highlights the impact of this moiety in medicinal chemistry. Here, we highlight the most important breakthroughs made with phosphinates with a range of pharmacological activities against many diseases, including anti-inflammatory, anti-Alzheimer, antiparasitic, antihepatitis, antiproliferative, anti-influenza, anti-HIV, antimalarial, and antimicrobial agents.
View Article and Find Full Text PDFThis work highlights the literature of one of the most valuable moieties in the field of organic chemistry. In this review, the chemistry of tetronic acid as a simple precursor to privileged heterocyclic motifs is described. The synthetic procedures of different fused heterocycles incorporating a furan moiety are described.
View Article and Find Full Text PDF