Huan Jing Ke Xue
February 2024
In recent years, regional compound air pollution events caused by fine particles (PM) and ozone (O) have occurred frequently in economically developed areas of China, in which atmospheric oxidizing capacity (AOC) has played an important role. In this study, the WRF-CMAQ model was used to study the impacts of anthropogenic emission reduction on AOC during the COVID-19 lockdown period. Three representative cities in eastern China (Shijiazhuang, Nanjing, and Guangzhou) were selected for an in-depth analysis to quantify the contribution of meteorology and emissions to the changes in AOC and oxidants and to discuss the impact of AOC changes on the formation of secondary pollutants.
View Article and Find Full Text PDFThis study applied a de-weather method based on a machine learning technique to quantify the contribution of meteorology and emission changes to air quality from 2015 to 2021 in four cities in the Yangtze River Delta Region. The results showed that the significant reductions in PM, NO, and SO emissions(57.2%-68.
View Article and Find Full Text PDF