Publications by authors named "Mo Hua"

Background: Mitochondria are highly dynamic organelles that constantly undergo processes of fission and fusion. The changes in mitochondrial dynamics shape the organellar morphology and influence cellular activity regulation. Soft X-ray tomography (SXT) allows for three-dimensional imaging of cellular structures while they remain in their natural, hydrated state, which omits the need for cell fixation and sectioning.

View Article and Find Full Text PDF

Background: Computed tomography (CT) technology has been gradually used in the differentiation of small mesenchymal tumors of the stomach and intestines from smooth muscle tumours.

Aim: To explore the value of enhanced CT in the differentiation of small mesenchymal tumors of the stomach and intestines from smooth muscle tumours.

Methods: Clinical data of patients with gastric mesenchymal or gastric smooth muscle tumours who were treated in our hospital from May 2018 to April 2023 were retrospectively analysed.

View Article and Find Full Text PDF

CRISPR-edited variants at the 3'-end of OsLOGL5's coding sequence (CDS), significantly increased rice grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Cytokinins impact numerous aspects of plant growth and development. This study reports that constitutive ectopic overexpression of a rice cytokinin-activation enzyme-like gene, OsLOGL5, significantly reduced primary root growth, tiller number, and yield.

View Article and Find Full Text PDF

Increasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, , under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth.

View Article and Find Full Text PDF

Functional stay-green is a valuable trait that extends the photosynthetic period, increases source capacity and biomass and ultimately translates to higher grain yield. Selection for higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL controlling functional stay-green that was discovered in a mapping population derived from the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very different rates of leaf senescence.

View Article and Find Full Text PDF

Ethylene plays a critical role in many diverse processes in plant development. Recent studies have demonstrated that overexpression of the maize ARGOS8 gene reduces the plant's response to ethylene by decreasing ethylene signaling and enhances grain yield in transgenic maize plants. The objective of this study was to determine the effects of ethylene on the development of nodal roots, which are primarily responsible for root-lodging resistance in maize.

View Article and Find Full Text PDF

A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation.

View Article and Find Full Text PDF

Root colonization by endophytic fungus Piriformospora indica facilitating growth/development and stress tolerance has been demonstrated in various host plants. However, global metabolomic studies are rare. By using high-throughput gas-chromatography-based mass spectrometry, 549 metabolites of 1,126 total compounds observed were identified in colonized and uncolonized Chinese cabbage roots, and hyphae of P.

View Article and Find Full Text PDF

Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expression variation in drought-tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS8 transgenic events.

View Article and Find Full Text PDF

Necrotic enteritis (NE), caused by Gram-positive Clostridium perfringens type A strains, has gained more attention in the broiler industry due to governmental restrictions affecting the use of growth-promoting antibiotics in feed. To date, there is only one commercial NE vaccine available, based on the C. perfringens alpha toxin.

View Article and Find Full Text PDF

A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis.

View Article and Find Full Text PDF

A transgenic gene-silencing approach was used to modulate the levels of ethylene biosynthesis in maize (Zea mays L.) and determine its effect on grain yield under drought stress in a comprehensive set of field trials. Commercially relevant transgenic events were created with down-regulated ACC synthases (ACSs), enzymes that catalyse the rate-limiting step in ethylene biosynthesis.

View Article and Find Full Text PDF

To investigate the effect of low power helium neon laser (He-Ne laser) on the telomere length of human fetal lung diploid fibroblast (2BS) cell, we used the laser (gamma = 632. 8 nm, P = 2 mW) to treat the young 2BS cells. Cell growth and proliferation was observed through MTT method after treating with low power laser.

View Article and Find Full Text PDF

Background: Fibrillar amyloid-β (Aβ) is thought to begin accumulating in the brain many years before the onset of clinical impairment in patients with Alzheimer's disease. By assessing the accumulation of Aβ in people at risk of genetic forms of Alzheimer's disease, we can identify how early preclinical changes start in individuals certain to develop dementia later in life. We sought to characterise the age-related accumulation of Aβ deposition in presenilin 1 (PSEN1) E280A mutation carriers across the spectrum of preclinical disease.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia.

View Article and Find Full Text PDF

Despite the fact that the presence of multiple large plasmids is a defining feature of extraintestinal pathogenic Escherichia coli (ExPEC), such as avian pathogenic E. coli (APEC), and despite the fact that these bacteria pose a considerable threat to both human and animal health, characterization of these plasmids is still limited. In this study, after successfully curing APEC of its plasmids, we were able to investigate, for the first time, the contribution to virulence of three plasmids, pAPEC-1 (103 kb), pAPEC-2 (90 kb), and pAPEC-3 (60 kb), from APEC strain chi7122 individually as well as in all combinations in the wild-type background.

View Article and Find Full Text PDF

Pneumococcal surface protein A (PspA) is highly immunogenic and can induce a protective immune response against pneumococcal infection. PspA is divided into two major families based on serological variability: family 1 and family 2. To provide broad protection, PspA proteins from pneumococcal strains Rx1 (family 1) and EF5668 (family 2) were combined to form two PspA fusion proteins, PspA/Rx1-EF5668 and PspA/EF5668-Rx1.

View Article and Find Full Text PDF

Recombinant bacterial vaccines must be fully attenuated for animal or human hosts to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. Unfortunately, many well-studied means for attenuating Salmonella render strains more susceptible to host defense stresses encountered following oral vaccination than wild-type virulent strains and/or impair their ability to effectively colonize the gut-associated and internal lymphoid tissues. This thus impairs the ability of recombinant vaccines to serve as factories to produce recombinant antigens to induce the desired protective immunity.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhi and Typhimurium vaccine candidates elicit significant immune responses in mice by intranasal (i.n.) immunization.

View Article and Find Full Text PDF

Recombinant attenuated Salmonella vaccines (RASVs) have been used extensively to express and deliver heterologous antigens to host mucosal tissues. Immune responses can be enhanced greatly when the antigen is secreted to the periplasm or extracellular compartment. The most common method for accomplishing this is by fusion of the antigen to a secretion signal sequence.

View Article and Find Full Text PDF

Clostridium perfringens-induced necrotic enteritis (NE) is a widespread disease in chickens that causes high mortality and reduced growth performance. Traditionally, NE was controlled by the routine application of antimicrobials in the feed, a practice that currently is unpopular. Consequently, there has been an increase in the occurrence of NE, and it has become a threat to the current objective of antimicrobial-free farming.

View Article and Find Full Text PDF

Laser tweezers Raman spectroscopy (LTRS) system is a combination of spectroscopy and laser tweezers; It is a new method of studying cells; It can trap single living cell and make Raman spectrum of single living cell. From the positions, intensities, and line widths of the Raman peaks in the spectra, we can get useful information about composition, structure and interactions of complexes inside the living cells. External agents may change cell's physiological state and this changed information can also be got from Raman spectra.

View Article and Find Full Text PDF

Arginine decarboxylase (ADC) is a key enzyme involved in the synthesis of polyamines, which have been implicated in a wide range of plant responses, including stress. However, regulation of polyamine levels in relation to ADC in response to stress at the molecular level is not well understood. In an attempt to address this question, we first cloned two cDNAs in mustard (Brassica juncea[L.

View Article and Find Full Text PDF