Publications by authors named "Mladen Borovina"

The ability of coordination polymers (CPs) to form multicomponent heteromeric materials, where the key structural features of the parent CP are retained, has been explored via molecular electrostatic potential-driven co-crystallization technologies. Thirteen co-formers presenting hydrogen-bond donors activated through a variety of electron-withdrawing functionalities were employed, and the extent of activation was evaluated using molecular electrostatic potential values. Attempted co-crystallizations of the seven most promising co-formers with a family of nine CPs ([CdX'(X-pz)]; X' = I, Br, and Cl; X = I, Br, and Cl) resulted in six successful outcomes; all four of the structurally characterized compounds displayed the intended hydrogen bond.

View Article and Find Full Text PDF

The polymerization property of aromatic polynitroso compounds could be used to create azodioxy porous networks with possible application for the adsorption of CO, the main greenhouse gas. Herein, we report the synthesis and characterization of new aromatic polynitroso compounds, with -nitroso groups attached to the triphenylbenzene, triphenylpyridine, triphenyltriazine and triphenylamine moiety. The synthesis of the pyridine-based trinitroso compound was performed by reduction of the corresponding trinitro derivative to -arylhydroxylamine followed by oxidation to the trinitroso product.

View Article and Find Full Text PDF

The approach for enhancing the elasticity of crystals with suboptimal elastic performances through a rational design was presented. A hydrogen-bonding link was identified as a critical feature in the structure of the parent material, the Cd(II) coordination polymer [CdI(I-pz)] (I-pz = iodopyrazine), to determine the mechanical output and was modified via cocrystallization. Small organic coformers resembling the initial organic ligand but with readily available hydrogens were selected to improve the identified link, and the extent of strengthening the critical link was in an excellent correlation with the delivered enhancement of elastic flexibility materials.

View Article and Find Full Text PDF

Porous organic polymers incorporating nitrogen-rich functionalities have recently emerged as promising materials for efficient and highly selective CO capture and separation. Herein, we report synthesis and characterization of new two-dimensional (2D) benzene- and triazine-based azo-bridged porous organic polymers. Different synthetic approaches towards the porous azo-bridged polymers were tested, including reductive homocoupling of aromatic nitro monomers, oxidative homocoupling of aromatic amino monomers and heterocoupling of aromatic nitro monomers and a series of aromatic diamines of different lengths and rigidity.

View Article and Find Full Text PDF

A simple model focusing on electrostatic contributions to interaction energies was found to be very effective for rationalizing the appearance of specific supramolecular interactions in a series of Cu(ii) coordination compounds. The experimental space was provided by a combination of Cu(ii) cations with acac-based anions (hexafluoracetylacetonato and trifluoracetylacetonato) and a series of pyridine-oxime ligands (3-pyridinealdoxime, methyl 3-pyridyl ketoxime, 4-pyridinealdoxime, methyl 4-pyridyl ketoxime, phenyl 4-pyridyl ketoxime). The calculated molecular electrostatic potential (MEP) values at competing hydrogen-bond acceptor sites, for ten structurally characterized complexes, provided guidelines for predicting supramolecular connectivity in cases when the MEP difference exceeded certain cut-off values, while two different and well-defined outcomes are possible within the so called 'grey zone', delineated by a range of MEP differences.

View Article and Find Full Text PDF

Crystalline coordination polymers tend to be brittle and inelastic, however, we now describe a family of such compounds that are capable of displaying mechanical elasticity in response to external pressure. The design approach successfully targets structural features that are critical for producing the desired mechanical output. The elastic crystals all comprise 1D cadmium(II) halide polymeric chains with adjacent metal centres bridged by two halide ions resulting in the required stacking interactions and short "4 Å" crystallographic axes.

View Article and Find Full Text PDF

In situ Raman spectroscopy was employed to study the course of a mechanochemical nucleophilic substitution on a carbonyl group. We describe evidence of base catalysis, akin to catalysis in solution, achieved by liquid-assisted grinding.

View Article and Find Full Text PDF