Publications by authors named "Mkhoyan K"

To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed.

View Article and Find Full Text PDF

Incipient ferroelectricity bridges traditional dielectrics and true ferroelectrics, enabling advanced electronic and memory devices. Firstly, we report incipient ferroelectricity in freestanding SrTiO nanomembranes integrated with monolayer MoS to create multifunctional devices, demonstrating stable ferroelectric order at low temperatures for cryogenic memory devices. Our observation includes ultra-fast polarization switching (~10 ns), low switching voltage (<6 V), over 10 years of nonvolatile retention, 100,000 endurance cycles, and 32 conductance states (5-bit memory) in SrTiO-gated MoS transistors at 15 K and up to 100 K.

View Article and Find Full Text PDF
Article Synopsis
  • Advancements in ultrawide bandgap (UWBG) semiconductors are crucial for high-power electronics and deep-ultraviolet (DUV) optoelectronics.
  • A thin heterostructure using SrSnO/La:SrSnO/GdScO was designed to improve conductivity and transparency, achieving significant charge carrier separation and phonon-limited transport behavior.
  • The research indicated room temperature mobilities between 40-140 cm²/Vs with 85% optical transparency at 300 nm, showcasing the potential of these materials for DUV semiconductor applications.
View Article and Find Full Text PDF

Efficient detection of the magnetic state is a critical step towards useful antiferromagnet-based spintronic devices. Recently, finite tunneling magnetoresistance (TMR) has been demonstrated in tunnel junctions with antiferromagnetic electrodes, however, these studies have been mostly limited to junctions with two identical antiferromagnet (AFM) electrodes, where the matching of the spin-split Fermi surfaces played critical role. It remains unclear if AFMs can provide a finite net spin polarization, and hence be used as a spin polarizer or detector.

View Article and Find Full Text PDF

As advances in computing technology increase demand for efficient data storage solutions, spintronic magnetic tunnel junction (MTJ)-based magnetic random-access memory (MRAM) devices emerge as promising alternatives to traditional charge-based memory devices. Successful applications of such spintronic devices necessitate understanding not only their ideal working principles but also their breakdown mechanisms. Employing an in situ electrical biasing system, atomic-resolution scanning transmission electron microscopy (STEM) reveals two distinct breakdown mechanisms.

View Article and Find Full Text PDF

The advancement in thin-film exfoliation for synthesizing oxide membranes has led to possibilities for creating artificially assembled heterostructures with structurally and chemically incompatible materials. The sacrificial layer method is a promising approach to exfoliate as-grown films from a compatible material system, allowing for their integration with dissimilar materials. Nonetheless, the conventional sacrificial layers often possess an intricate stoichiometry, thereby constraining their practicality and adaptability, particularly when considering techniques such as molecular beam epitaxy (MBE).

View Article and Find Full Text PDF

Rich electron-matter interactions fundamentally enable electron probe studies of materials such as scanning transmission electron microscopy (STEM). Inelastic interactions often result in structural modifications of the material, ultimately limiting the quality of electron probe measurements. However, atomistic mechanisms of inelastic-scattering-driven transformations are difficult to characterize.

View Article and Find Full Text PDF

Using atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt-Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn to PtSn phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn phase.

View Article and Find Full Text PDF

Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic PtSn and PtSnFe thin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for PtSn and PtSnFe, respectively.

View Article and Find Full Text PDF

The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation.

View Article and Find Full Text PDF

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition.

View Article and Find Full Text PDF

Accelerating catalytic chemistry and tuning surface reactions require precise control of the electron density of metal atoms. In this work, nanoclusters of platinum were supported on a graphene sheet within a catalytic condenser device that facilitated electron or hole accumulation in the platinum active sites with negative or positive applied potential, respectively. The catalytic condenser was fabricated by depositing on top of a -type Si wafer an amorphous HfO dielectric (70 nm), on which was placed the active layer of 2-4 nm platinum nanoclusters on graphene.

View Article and Find Full Text PDF

Perovskite stannate SrSnO (SSO) is attracting attention as ultraviolet transparent conducting oxides (UV TCOs) due to its ultrawide band gap and high conductivity. Here, we investigate in detail the thickness-dependent electrical, structural, and optical properties of sequentially strain-relaxed La-doped SrSnO (SLSO) epitaxial thin films. We find that the SLSO films grow as an orthorhombic phase with in the direction under the tensile strain.

View Article and Find Full Text PDF

Injecting spin currents into antiferromagnets and realizing efficient spin-orbit-torque switching represents a challenging topic. Because of the diminishing magnetic susceptibility, current-induced antiferromagnetic dynamics remain poorly characterized, complicated by spurious effects. Here, by growing a thin film antiferromagnet, α-Fe_{2}O_{3}, along its nonbasal plane orientation, we realize a configuration where the spin-orbit torque from an injected spin current can unambiguously rotate and switch the Néel vector within the tilted easy plane, with an efficiency comparable to that of classical ferrimagnetic insulators.

View Article and Find Full Text PDF

Precise control of electron density at catalyst active sites enables regulation of surface chemistry for the optimal rate and selectivity to products. Here, an ultrathin catalytic film of amorphous alumina (4 nm) was integrated into a catalytic condenser device that enabled tunable electron depletion from the alumina active layer and correspondingly stronger Lewis acidity. The catalytic condenser had the following structure: amorphous alumina/graphene/HfO dielectric (70 nm)/p-type Si.

View Article and Find Full Text PDF

The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe) and a topological semimetal (ZrTe).

View Article and Find Full Text PDF

Zeolite nanosheets can be used for the fabrication of low-defect-density, thin, and oriented zeolite separation membranes. However, methods for manipulating their morphology are limited, hindering progress toward improved performance. We report the direct synthesis (i.

View Article and Find Full Text PDF

Synthesis of a pentasil-type zeolite with ultra-small few-unit-cell crystalline domains, which we call FDP (few-unit-cell crystalline domain pentasil), is reported. FDP is made using bis-1,5(tributyl ammonium) pentamethylene cations as structure directing agent (SDA). This di-quaternary ammonium SDA combines butyl ammonium, in place of the one commonly used for MFI synthesis, propyl ammonium, and a five-carbon nitrogen-connecting chain, in place of the six-carbon connecting chain SDAs that are known to fit well within the MFI pores.

View Article and Find Full Text PDF

Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba vacancies adjacent to the core atomic sites resulting in reconstruction of the core.

View Article and Find Full Text PDF

A line defect with metallic characteristics has been found in optically transparent BaSnO perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect.

View Article and Find Full Text PDF
Article Synopsis
  • A novel method for creating self-assembled periodic nanostructures is presented, utilizing martensitic phase transformations in a thin film of perovskite SrSnO.
  • The resulting structures feature varying dielectric properties, which can be adjusted through chemical doping, strain engineering, temperature, and laser wavelength.
  • This approach opens up possibilities for "built-to-order" nanostructures, aimed at specific optoelectronic applications.
View Article and Find Full Text PDF

Molybdenum disulfide (MoS) is being studied for a wide range of applications including lithium-ion batteries and hydrogen evolution reaction catalysts. In this paper, we present a single-step nonthermal plasma-enhanced chemical vapor deposition (PECVD) process for the production of two-dimensional MoS. This method provides an alternative route to established CVD and plasma synthesis routes.

View Article and Find Full Text PDF

Black arsenic (BAs) is an elemental van der Waals semiconductor that is promising for a wide range of electronic and photonic applications. The narrow bandgap and symmetric band structure suggest that ambipolar (both n- and p-type) transport should be observable, however, only p-type transport has been experimentally studied to date. Here, we demonstrate and characterize ambipolar transport in exfoliated BAs field effect transistors.

View Article and Find Full Text PDF

Mesoporous silica is often employed as a coating material in core-shell nanoparticles to decrease the possibility of sintering or aggregation of the core particles. In this work, we discovered a surprising morphological transformation during the sulfidation and regeneration (oxidation) of core-shell CuO@mSiO materials designed for HS capture. Although CuS cores were still encapsulated within the silica shells after in situ sulfidation, hollow silica shells formed during the regeneration step as CuO leached out of the shell and aggregated into larger particles.

View Article and Find Full Text PDF

Black arsenic (BAs) is a van der Waals layered material with a puckered honeycomb structure and has received increased interest due to its anisotropic properties and promising performance in devices. Here, crystalline structure, thickness-dependent dielectric responses, and ambient stability of BAs nanosheets are investigated using scanning transmission electron microscopy (STEM) imaging and spectroscopy. Atomic-resolution high-angle annular dark-field (HAADF)-STEM images directly visualize the three-dimensional structure and evaluate the degree of anisotropy.

View Article and Find Full Text PDF