Publications by authors named "Mkawi E"

Metal additive processing in polymer: fullerene bulk heterojunction systems is recognized as a viable way for improving polymer photovoltage performance. In this study, the effect of niobium (Nb) metal nanoparticles at concentrations of 2, 4, 6, and 8 mg/mL on poly(3-hexylthiophene-2,5-diyl) (P3HT)-6,6]-phenyl C61-butyric acid methyl ester (PCBM) blends was analyzed. The effect of Nb volume concentration on polymer crystallinity, optical properties, and surface structure of P3HT and PCBM, as well as the enhancement of the performance of P3HT:PC61BM solar cells, are investigated.

View Article and Find Full Text PDF

Kesterite CuZnSnS (CZTS) thin films using various 1,8-diiodooctane (DIO) polymer additive concentrations were fabricated by the electrochemical deposition method. The optical, electrical, morphological, and structural properties of the CZTS thin films synthesized using different concentrations of 5 mg/mL, 10 mg/mL, 15 mg/mL, and 20 mg/mL were investigated using different techniques. Cyclic voltammetry exhibited three cathodic peaks at -0.

View Article and Find Full Text PDF

Nerve tissue engineering aims to create scaffolds that promote nerve regeneration in the damaged peripheral nervous system. However, there remain some challenges in the construction of scaffolds in terms of mechanical properties and cellular behaviour. The present work aims to develop multifunctional implantable nanofibrous scaffolds for nerve regeneration.

View Article and Find Full Text PDF

In this study, polymer solar cells were synthesized by adding SbS nanocrystals (NCs) to thin blended films with polymer poly(3-hexylthiophene)(PHT) and [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) as the p-type material prepared via the spin-coating method. The purpose of this study is to investigate the dependence of polymer solar cells' performance on the concentration of SbS nanocrystals. The effect of the SbS nanocrystal concentrations (0.

View Article and Find Full Text PDF

Regenerative medicine is a field that aims to influence and improvise the processes of tissue repair and restoration and to assist the body to heal and recover. In the field of hard tissue regeneration, bio-inert materials are being predominantly used, and there is a necessity to use bioactive materials that can help in better tissue-implant interactions and facilitate the healing and regeneration process. One such bioactive material that is being focused upon and studied extensively in the past few decades is bioactive glass (BG).

View Article and Find Full Text PDF

Composite polymer electrolyte (CPE) based on polyvinyl alcohol (PVA) polymer, potassium carbonate (KCO) salt, and silica (SiO) filler was investigated and optimized in this study for improved ionic conductivity and potential window for use in electrochemical devices. Various quantities of SiO in wt.% were incorporated into PVA-KCO complex to prepare the CPEs.

View Article and Find Full Text PDF

Supercapacitors are energy storage devices with high power density, rapid charge/discharge rate, and excellent cycle stability. Carbon-based supercapacitors are increasingly attracting attention because of their large surface area and high porosity. Carbon-based materials research has been recently centered on biomass-based materials due to the rising need to maintain a sustainable environment.

View Article and Find Full Text PDF

This work reports the use of a ternary composite that integrates p-Toluene sulfonic acid doped polyaniline (PANI), chitosan, and reduced graphene oxide (RGO) as the active sensing layer of a surface plasmon resonance (SPR) sensor. The SPR sensor is intended for application in the non-invasive monitoring and screening of diabetes through the detection of low concentrations of acetone vapour of less than or equal to 5 ppm, which falls within the range of breath acetone concentration in diabetic patients. The ternary composite film was spin-coated on a 50-nm-thick gold layer at 6000 rpm for 30 s.

View Article and Find Full Text PDF

To non-invasively monitor and screen for diabetes in patients, there is need to detect low concentration of acetone vapor in the range from 1.8 ppm to 5 ppm, which is the concentration range of acetone vapor in diabetic patients. This work presents an investigation for the utilization of chitosan-polyethylene glycol (PEG)-based surface plasmon resonance (SPR) sensor in the detection of trace concentration acetone vapor in the range of breath acetone in diabetic subjects.

View Article and Find Full Text PDF

We report growth of quaternary Cu2 ZnSnS4 (CZTS) thin films prepared by the electrochemical deposition from salt precursors containing Cu (II), Zn (II) and Sn (IV) metals. The influence of different sulfurization times t (t = 75, 90, 105, and 120 min) on the structural, compositional, morphological, and optical properties, as well as on the electrical properties is studied. The films sulfurized 2 hours showed a prominent kesterite phase with a nearly stoichiometric composition.

View Article and Find Full Text PDF