Various toxicity and pharmacokinetic evaluations as screening experiments are needed at the drug discovery stage. Currently, to reduce the use of animal experiments and developmental expenses, the development of high-performance predictive models based on quantitative structure-activity relationship analysis is desired. From these evaluation targets, we selected 50% lethal dose (LD), blood-brain barrier penetration (BBBP), and the clearance (CL) pathway for this investigation and constructed predictive models for each target using 636-11,886 compounds.
View Article and Find Full Text PDFThe aim of this study was to develop a self-micellizing solid dispersion of celecoxib (SMSD/CEL) with enhanced dissolution to suppress a delay in absorption under impairment of gastrointestinal (GI) secretion and motility induced by severe pain. Soluplus-based SMSD/CEL was prepared by lyophilization and physiochemically characterized. A pharmacokinetic study of orally-dosed CEL samples was carried out in rats with propantheline (PPT)-induced the impairment of GI secretion and motility.
View Article and Find Full Text PDFThis study aimed to develop a self-emulsifying drug delivery system (SEDDS) of celecoxib (CEL) for suppressed delay in oral absorption under impaired gastric motility. A pseudo-ternary phase diagram was constructed for the determination of the optimal component ratio in SEDDS of CEL (SEDDS/CEL), and the SEDDS/CEL was physicochemically characterized. A pharmacokinetic study on orally dosed CEL samples (5-mg CEL/kg) was carried out in normal and propantheline (PPT)-treated rats to mimic impaired gastric motility.
View Article and Find Full Text PDFThe present study aimed to develop a celecoxib (CEL) nanoparticle with improved dissolution/dispersion and consistent absorption even in the presence of impaired gastric motility. CEL was pulverized by a wet-milling with hydroxypropyl cellulose (HPC), and the prepared nanoparticles were physicochemically characterized after freeze-drying. CEL nanoparticle with HPC-SSL (NP/CEL) exhibited better dissolution/dispersion behavior in pH1.
View Article and Find Full Text PDFThe main objective of this study was to develop a self-emulsifying drug delivery system (SEDDS) of carvedilol (CAR) with improved oral absorption and hepatoprotective properties. SEDDS-CAR was prepared based on d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and physicochemically characterized. Pharmacokinetic behaviors after the oral administration of CAR samples in rats were evaluated to clarify the possible enhancement of the oral absorption of CAR.
View Article and Find Full Text PDFThe aim of this study is to enhance the antihypothermic action of ginger extract (GE) employing a solid dispersion (SD) approach. The prepared SD of GE (GE/SD) was characterized in terms of physicochemical and pharmacokinetic properties. The antihypothermic action of GE samples was evaluated in a rat model of hypothermia.
View Article and Find Full Text PDF