Publications by authors named "Mizuki Kondo"

TonB-dependent transporters (TBDTs) mediate outer membrane transport of nutrients using the energy derived from proton motive force transmitted from the TonB-ExbB-ExbD complex localized in the inner membrane. Recently, we discovered ddvT encoding a TBDT responsible for the uptake of a 5,5-type lignin-derived dimer in Sphingobium sp. strain SYK-6.

View Article and Find Full Text PDF

Diclofenac is widely distributed in freshwater environments. To support a robust aquatic risk assessment, medaka (Oryzias latipes) were exposed to diclofenac at sublethal concentrations of 0.608, 2.

View Article and Find Full Text PDF

We previously identified a novel molecule "SHATI/NAT8L" that exerts an inhibitory effect on methamphetamine (METH)-induced behavioral deficits. Recently, it has been reported that SHATI might function as an aspartate N-acetyltransferase, which synthesizes N-acetylaspartate (NAA) in vitro. However, whether SHATI actually synthesizes NAA in vivo in the brain is still unclear.

View Article and Find Full Text PDF

In a previous report, we identified a novel molecule, SHATI/NAT8L, having an inhibitory effect on methamphetamine (METH)-induced hyperlocomotion, sensitization, and conditioned place preference (CPP). SHATI/NAT8L attenuates the METH-induced increase in dopamine overflow in the nucleus accumbens (NAc) by promoting plasmalemmal and vesicular dopamine uptake. However, the biological functions of the protein remain unclear.

View Article and Find Full Text PDF

We previously identified a new molecule, "SHATI/NAT8L," which has an inhibitory effect on methamphetamine (METH)-induced hyperlocomotion, sensitization, and conditioned place preference. Nevertheless, the extent of SHATI localization and its functions are only partially understood. In this study, we used the FLAG-tag method to investigate SHATI localization.

View Article and Find Full Text PDF

This communication reports on O2 reduction with a biocathode composed of poly(3-methylthiophene) (P3MT) and laccase based on direct electron transfer (DET). The biocathode was fabricated simply by adsorption of laccase on a P3MT film which was formed on a gold electrode by electrochemical polymerization. Properties of the biocathode were examined by measuring steady-state currents at an arbitrary potential in buffer solutions saturated with O2 or N2 at room temperature.

View Article and Find Full Text PDF

An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode.

View Article and Find Full Text PDF

A carbon paper electrode was modified with the conducting copolymer of 3-methylthiopene and thiophene-3-acetic acid prepared electrochemically on the electrode, and an enzyme electrode was fabricated by covalent immobilization of glucose oxidase on the modified electrode. The modification with the conducting copolymer increased the surface area of the electrode and the amount of the immobilized enzyme. As a result, the enzyme electrode showed a high catalytic activity.

View Article and Find Full Text PDF